001     8081
005     20200402205754.0
024 7 _ |2 DOI
|a 10.1016/j.electacta.2009.02.087
024 7 _ |2 WOS
|a WOS:000266826200004
037 _ _ |a PreJuSER-8081
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Electrochemistry
100 1 _ |a Beltramo, G. L.
|b 0
|u FZJ
|0 P:(DE-Juel1)128800
245 _ _ |a Anomalous Helmholtz-Capacitance on Stepped Surfaces of Silver and Gold
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2009
300 _ _ |a 4305 - 4311
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Electrochimica Acta
|x 0013-4686
|0 1776
|y 18
|v 54
500 _ _ |a We thank Karina Morgenstern, University Hannover, for a helpful exchange of ideas on the adsorption of water at steps and for making STM images available to us prior to publication. Inspiring discussions with Wolfgang Schmickler, University Ulm, are also gratefully acknowledged. Udo Linke has contributed significantly to this work by his careful and innovative preparation of the crystal surfaces. The work was partially supported by the Fond derChemischen Industrie and the Deutsche Forschungsgemeinschaft.
520 _ _ |a We have studied the capacitance of the solid/electrolyte interface on Ag(11n) and Au(11n) surfaces in KClO4 and HClO4 as function of the electrolyte concentration and the step density. We find that the inner layer capacitance (Helmholtz-capacitance) at the potential of (total) zero charge is dramatically reduced on stepped surfaces. Standard theories which describe the Helmholtz-capacitance by properties of the liquid, a hard wall boundary condition and the polarizability of the electron gas at the metal surface fail to describe this behavior. We propose that the different polarizability of water bonded to the surface need be taken into account and attribute the reduced capacitance at steps to the lower polarizability of water molecules bonded to step edges. (C) 2009 Elsevier Ltd. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
536 _ _ |a Kondensierte Materie
|c P54
|0 G:(DE-Juel1)FUEK414
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Cold
653 2 0 |2 Author
|a Silver
653 2 0 |2 Author
|a Stepped single crystals
653 2 0 |2 Author
|a Helmholtz-capacitance
700 1 _ |a Giesen, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)4744
700 1 _ |a Ibach, H.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5414
773 _ _ |a 10.1016/j.electacta.2009.02.087
|g Vol. 54, p. 4305 - 4311
|p 4305 - 4311
|q 54<4305 - 4311
|0 PERI:(DE-600)1483548-4
|t Electrochimica acta
|v 54
|y 2009
|x 0013-4686
856 7 _ |u http://dx.doi.org/10.1016/j.electacta.2009.02.087
909 C O |o oai:juser.fz-juelich.de:8081
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 1
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|0 I:(DE-Juel1)VDB801
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |d 31.12.2010
|g IBN
|k IBN-4
|l Biomechanik
|0 I:(DE-Juel1)VDB802
|x 2
970 _ _ |a VDB:(DE-Juel1)116964
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21