

Contents lists available at ScienceDirect

Data in Brief

Data Article

Small angle neutron scattering data of polymer electrolyte membranes partially swollen in water

Yue Zhao ^a, Miru Yoshida ^b, Tatsuya Oshima ^b, Satoshi Koizumi ^c, Masahiro Rikukawa ^b, Noemi Szekely ^d, Aurel Radulescu ^d, Dieter Richter ^e

- ^a Quantum Beam Science Center (QuBS), Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292, Japan
- ^b Department of Material Science, Sophia University, Tokyo 102-0094, Japan
- ^c Department of Engineering, Ibaraki University, Hitachi 615-8510, Japan
- ^d Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science @ MLZ, Lichtenbergstraße 1, D-85747 Garching, Germany
- ^e Jülich Centre for Neutron Science & Institute for Complex Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

ARTICLE INFO

Article history:
Received 28 January 2016
Received in revised form
15 February 2016
Accepted 1 March 2016
Available online 9 March 2016

Keywords: Small angle neutron scattering Polymer electrolyte membranes Hard-sphere model

ABSTRACT

In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus-Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. "Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells" [1].

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area Materials science Soft matter

DOI of original article: http://dx.doi.org/10.1016/j.polymer.2016.01.061 *E-mail address:* zhao.yue@jaea.go.jp (Y. Zhao).

Type of data Table, figure

How data was Small angle neutron scattering instrument at KWS2, FRM2

acquired

Data format Analyzed

Experimental The dry membranes with an average thickness of \sim 50 μ m were prepared by factors solution casting onto a flat glass plate from its dimethyl sulfoxide solution

solution casting onto a flat glass plate from its dimethyl sulfoxide solution with a concentration of 5 wt%. Partially water swollen membranes were prepared by putting the dry membranes into a humility controller at 30%

relative humidity and 25 °C.

Experimental The incident neutron beam was monochromatized with a velocity selector to features have the average wavelength (λ) of 5 Å with a wavelength resolution of $\Delta \lambda$ /

 λ = 20%. All of the measurements were done at 25 ± 0.5 °C. The scattering patterns were collected with a two-dimensional scintillation detector, and circularly averaged to obtain scattering intensity profiles as a function of q, where q is the scattering vector, defined as q=($4\pi/\lambda$)sin(θ /2) with θ being the scattering angle. The scattering profiles were corrected for the instrument background, detector sensitivity, and scattering from empty cell, and finally calibrated on the absolute scale (cm $^{-1}$) using a Plexiglas secondary

standard.

Data source SANS measurements were performed with KWS-2 at the neutron source

location Heinz Maier-Leibnitz (FRM II reactor) in Garching, Germany.

Data accessibility Data is with this article

Value of the data

 Hard-sphere structure model is introduced to elucidate the morphology of polymer electrolyte membranes.

- Data of partially swollen membranes together with that of fully swollen membranes leads to a thorough understanding of the morphology.
- The method and model analysis are worthy being applied to other types of membranes.

1. Data

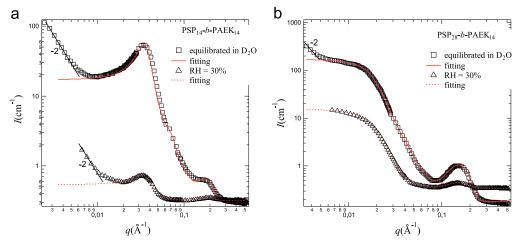

Partially water swollen membranes were prepared by putting the dry PEMs into a humility controller at 30% relative humidity and 25 $^{\circ}$ C. The SANS measurements were performed with KWS-2 at the neutron source Heinz Maier-Leibnitz (FRM II reactor) in Garching, Germany, and the scattering intensity profiles has been corrected and calibrated on the absolute scale (cm $^{-1}$).

Fig. 1a and b show the SANS intensity profiles of the two membranes, PSP_{14} -b-PAEK₁₄ and PSP_{28} -b-PAEK₁₄, as a function of scattering vector q, respectively. The profile of the corresponding fully D_2O -swollen membranes is plotted in the same figure as a reference. Hard-Sphere (HS) structure model with Percus-Yervick interference interactions was applied to analyze these scattering profiles [1,2]. The best fitting parameters are listed in Tables 1 and 2. Note that the profiles at high-q range $(0.08 < q < 0.45 \text{ Å}^{-1})$ can be fitted well by Eq. (6) below, and the best fitted curve is summed up with the fitting curve in the middle-q range and shown in the figure.

2. Experimental design, materials and methods

2.1. Materials

Two multiblock copolymer poly(sulfonate phenylene)-b-poly(arylene ether ketone) with different block ratios, designated as PSP₁₄-b-PAEK₁₄ and PSP₂₈-b-PAEK₁₄ for brevity, were synthesized

Fig. 1. Part (a) SANS profiles of PSP_{14} - $PAEK_{14}$ membranes equilibrated at RH=30% (triangles) and fully D_2O -swollen state (squares) at room temperature. The best-fitted theoretical curves ranging from the middle-q region based on HS model to the high-q region based on Eq. (6) for both membranes are also shown in the figure by red dashed and solid lines, respectively. Part (b) SANS profiles of PSP_{28} -b- $PAEK_{14}$ membranes equilibrated at RH=30% (triangles) and fully D_2O -swollen state (squares) at room temperature. The best-fitted theoretical curves ranging from the middle-q region based on HS model to the high-q region based on Eq. (6) for both membranes are also shown in the figure by red dashed and solid lines, respectively.

Table 1 Parameters used to fit SANS data of PSP_{14} -b-PAEK₁₄ membranes equilibrated at RH=30% and in D_2O by Eqs. (1) and (6).

PSP ₁₄ -b-PAEK ₁₄	Middle-q range (HS model)				High-q range (ionomer peak)		
	$\overline{\phi}$	R (Å)	σ_R/R	K	$I_{ m m,ion}$	$q_{ m m,ion}$ (Å $^{-1}$)	$\sigma_q/q_{ m m,ion}$
Equilibrated at RH=30% Equilibrated in D ₂ O	0.25 0.32	80 85	0.247 0.247	1.56 211.3	0.004 0.026	0.18 0.18	0.194 0.194

Table 2 Parameters used to fit SANS data of PSP_{28} -b-PAEK₁₄ membranes equilibrated at RH=30% and in D_2O by Eqs. (1) and (6).

Middle-q range (HS model)				High-q range (ionomer peak)		
ϕ	R (Å)	σ_R/R	K	$I_{\rm m,ion}$	$q_{ m m,ion}$ (Å $^{-1}$)	$\sigma_q/q_{ m m,ion}$
0.08 0.07	150 145	0.243 0.245	25.9 295.3	0.01 0.08	0.152 0.152	0.243 0.243
	φ 0.08	φ R (Å) 0.08 150	ϕ R (Å) σ_R/R 0.08 150 0.243	ϕ R (Å) σ_R/R K 0.08 150 0.243 25.9	ϕ R (Å) σ_R/R K $I_{m,ion}$ 0.08 150 0.243 25.9 0.01	ϕ R (Å) σ_R/R K $I_{m,ion}$ $q_{m,ion}$ (Å ⁻¹) 0.08 150 0.243 25.9 0.01 0.152

by varying the stoichiometry of the sulfonated monomers and hydrophobic oligomers via the nickel-catalyzed polymerization [3,4]. The subscript 14 or 28 refers to the repeating unit number in each block. The molecular structure and characteristics of these two polymers can be found elsewhere [1,2]. The dry membranes with an average thickness of $\sim 50 \, \mu m$ were prepared by solution casting onto a flat glass plate from its dimethyl sulfoxide solution with a concentration of 5 wt% [3].

Partially water swollen membranes were prepared by putting the dry membranes into a humility controller at 30% relative humidity and 25 °C.

2.2. Methods

SANS measurements were performed with KWS-2 at the neutron source Heinz Maier-Leibnitz (FRM II reactor) in Garching, Germany [5]. The incident neutron beam was monochromatized with a velocity selector to have the average wavelength (λ) of 5 Å with a wavelength resolution of $\Delta\lambda/\lambda=20\%$. All of the measurements were done at 25 ± 0.5 °C. The scattering patterns were collected with a two-dimensional scintillation detector, and circularly averaged to obtain scattering intensity profiles as a function of q, where q is the scattering vector, defined as $q=(4\pi/\lambda)\sin(\theta/2)$ with θ being the scattering angle. The scattering profiles were corrected for the instrument background, detector sensitivity, and scattering from empty cell, and finally calibrated on the absolute scale (cm $^{-1}$) using a Plexiglas secondary standard.

2.3. Analysis

We assume that the topology of the swollen membranes can be described by an almost random distribution of n particles in a homogeneous matrix. Let Δb be the contrast of the particle density with respect to the matrix density and v be the of average volume of a single particle, then the observed scattering intensity, I(q), is [6]

$$I(q) = (\Delta b)^2 nv^2 P(q)S(q) = KP(q)S(q)$$
(1)

where P(q) is the form factor of the particles, S(q) is an approximate interference factor and K is a constant in terms of Δb , n and v. We assume that the number of the particles per volume is high that S(q) must be considered despite the random arrangement of the particles. The contrast $\Delta b = b_p - b_m$ is defined by the difference between the scattering length density (SLD) of the particle phase, b_p , and that of the matrix phase, b_m . Thus, Δb is computable as long as the shape and composition of the particle phase and the matrix phase are well determined, and their SLDs are theoretically estimated below.

SLD of a molecule of i atoms is related to its molecular structure and may be readily calculated from the simple expression given by $b = \sum_i b_i \frac{dN_A}{M_w}$ where b_i is the scattering length of ith atom, d is the mass density of the scattering body, M_w is the molecular weight, and N_A is the Avogadoro constant [6].

Let us consider an ensemble of spheres with varying sizes that can be described by a Gaussian size distribution:

$$P(q) = \int_0^\infty \left\{ \frac{3}{(qr)^3} \left[\sin(qr) - qr \cos(qr) \right] \right\}^2 \frac{1}{(2\pi)^{1/2} \sigma_R} \exp\left[\frac{-(r-R)^2}{2\sigma_R^2} \right] dr$$
 (2)

with R being the average radius, and σ_R being its standard deviation. Thus $v = \frac{4\pi R^3}{3}$. We consider Percus–Yevick expression to account for interparticle interference [2,7], then S(q) is the interference factor, described for a random arrangement of spheres by the following expression:

$$S(q,R,\phi) = \frac{1}{1 + 24\phi\left(\frac{F(A)}{A}\right)} \tag{3}$$

here A=2qR and ϕ is the hard sphere volume fraction. F(A) is a trigonometric function of A and ϕ given by

$$F(A) = \frac{\alpha}{A^2} (\sin A - A\cos A) + \frac{\beta}{A^3} \left(2A \sin A + \left(2 - A^2 \right) \cos A - 2 \right) + \frac{\gamma}{A^5} \left(-A^4 \cos A + 4 \left[\left(3A^2 - 6 \right) \cos A + \left(A^3 - 6A \right) \sin A + 6 \right] \right)$$
(4)

$$\alpha = (1 + 2\phi)^2 / (1 - \phi)^4$$

$$\beta = -6\phi \left(1 + \frac{\phi}{2}\right)^2 / (1 - \phi)^4$$

$$\gamma = \frac{1}{2\phi} (1 + 2\phi)^2 / (1 - \phi)^4$$
(5)

The distribution of the ionic clusters at high-q range can be fitted well by Gaussian distribution function, where the scattering intensity around the ionomer peak at 0.08 Å⁻¹ < q < 0.45 Å⁻¹, $I_{\rm ion}(q)$, can be expressed by

$$I_{ion}(q) = I_{m,ion}G(q) + I_{inc}$$

$$\tag{6}$$

where $I_{m,ion}$ is the ionomer peak height, G(q) is Gaussian distribution function about the ionomer peak at $q_{m,ion}$, given by $G(q) = \frac{1}{(2\pi)^{1/2}\sigma_q} \exp\left[-\left(q-q_{m,ion}\right)^2/(2\sigma_q^2)\right]$, with σ_q being the standard deviation of $q_{m,ion}$, and I_{inc} is the incoherent scattering intensity, which can be determined by the average intensity of the flat part of the profile at q>0.4 Å $^{-1}$ in the high-q region. Eq. (6) is used to fit profiles in Fig. 1a and b and the fitting parameters are listed in Tables 1 and 2.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.03.011.

References

- Y. Zhao, M. Yoshida, T. Oshima, S. Koizumi, M. Rikukawa, N. Szekely, A. Radulescu, D. Richter, Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells, Polymer 86 (2016) 157–167.
- [2] J.K. Percus, G.J. Yevich, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev. 110 (1958) 1–13.
- [3] M. Yoshida, Y. Zhao, M. Yoshizawa-Fujita, A. Ohira, Y. Takeoka, S. Koizumi, M. Rikukawa, PFG-NMR and SANS studies in cation exchange membranes based on sulfonated polyphenylene multiblock copolymers, ECS Trans. 50 (2013) 1045–1053.
- [4] I. Tonozuka, M. Yoshida, K. Kaneko, Y. Takeoka, M. Rikukawa, Considerations of polymerization method and molecular weight for proton-conducting poly(p-phenylene) derivatives, Polymer 52 (2011) 6020–6028.
- [5] A. Radulescu, V. Pipich, H. Frielinghaus, M.S. Appavou, KWS-2, the high intensity/wide Q-range small-angle neutron diffractometer for soft-matter and biology at FRM II, J. Phys.: Conf. Ser. 351 (2012) 012026.
- [6] R.J. Roe, Methods of X-ray abd Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000.
- [7] D.J. Kinning, E.L. Thomas, Hard-sphere interactions between spherical domains in diblock copolymers, Macromolecules 17 (1984) 1712–1718.