000808415 001__ 808415
000808415 005__ 20210129222751.0
000808415 0247_ $$2doi$$a10.1021/acs.jpclett.6b00144
000808415 0247_ $$2WOS$$aWOS:000371563700019
000808415 037__ $$aFZJ-2016-02238
000808415 082__ $$a530
000808415 1001_ $$0P:(DE-HGF)0$$aMoreno, Angel J.$$b0$$eCorresponding author
000808415 245__ $$aConcentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions
000808415 260__ $$aWashington, DC$$bACS$$c2016
000808415 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1460613423_2947
000808415 3367_ $$2DataCite$$aOutput Types/Journal article
000808415 3367_ $$00$$2EndNote$$aJournal Article
000808415 3367_ $$2BibTeX$$aARTICLE
000808415 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808415 3367_ $$2DRIVER$$aarticle
000808415 520__ $$aBy means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs—a model system free of specific interactions—propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.
000808415 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000808415 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000808415 588__ $$aDataset connected to CrossRef
000808415 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000808415 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x1
000808415 65017 $$0V:(DE-MLZ)GC-130-1$$2V:(DE-HGF)$$aHealth and Life$$x0
000808415 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000808415 7001_ $$0P:(DE-HGF)0$$aLo Verso, Federica$$b1
000808415 7001_ $$0P:(DE-HGF)0$$aArbe, Arantxa$$b2
000808415 7001_ $$0P:(DE-HGF)0$$aPomposo, José A.$$b3
000808415 7001_ $$0P:(DE-HGF)0$$aColmenero, Juan$$b4
000808415 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.6b00144$$gVol. 7, no. 5, p. 838 - 844$$n5$$p838 - 844$$tThe @journal of physical chemistry letters$$v7$$x1948-7185$$y2016
000808415 8564_ $$uhttps://juser.fz-juelich.de/record/808415/files/acs.jpclett.6b00144.pdf$$yRestricted
000808415 8564_ $$uhttps://juser.fz-juelich.de/record/808415/files/acs.jpclett.6b00144.gif?subformat=icon$$xicon$$yRestricted
000808415 8564_ $$uhttps://juser.fz-juelich.de/record/808415/files/acs.jpclett.6b00144.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808415 8564_ $$uhttps://juser.fz-juelich.de/record/808415/files/acs.jpclett.6b00144.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808415 8564_ $$uhttps://juser.fz-juelich.de/record/808415/files/acs.jpclett.6b00144.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808415 8564_ $$uhttps://juser.fz-juelich.de/record/808415/files/acs.jpclett.6b00144.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808415 909CO $$ooai:juser.fz-juelich.de:808415$$pVDB$$pVDB:MLZ
000808415 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000808415 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000808415 9141_ $$y2016
000808415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808415 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2014
000808415 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2014
000808415 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808415 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808415 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808415 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808415 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808415 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808415 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808415 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808415 920__ $$lyes
000808415 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000808415 980__ $$ajournal
000808415 980__ $$aVDB
000808415 980__ $$aUNRESTRICTED
000808415 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218