000808417 001__ 808417
000808417 005__ 20210129222754.0
000808417 0247_ $$2doi$$a10.1007/s00396-015-3814-2
000808417 0247_ $$2ISSN$$a0023-2904
000808417 0247_ $$2ISSN$$a0303-402X
000808417 0247_ $$2ISSN$$a0368-6590
000808417 0247_ $$2ISSN$$a1435-1536
000808417 0247_ $$2WOS$$aWOS:000372259300012
000808417 037__ $$aFZJ-2016-02240
000808417 082__ $$a540
000808417 1001_ $$0P:(DE-HGF)0$$aKutz, Anne$$b0
000808417 245__ $$aIonic dye–surfactant nanoassemblies: interplay of electrostatics, hydrophobic effect, and π–π stacking
000808417 260__ $$aBerlin$$bSpringer$$c2016
000808417 3367_ $$2DRIVER$$aarticle
000808417 3367_ $$2DataCite$$aOutput Types/Journal article
000808417 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484475066_25168
000808417 3367_ $$2BibTeX$$aARTICLE
000808417 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808417 3367_ $$00$$2EndNote$$aJournal Article
000808417 520__ $$aThe interplay of several non-covalent interaction forces is used as key to supramolecular structures. Combining cationic alkyltrimethylammonium bromide surfactants and the divalent anionic azo dye Acid Red 26 (Ar26) as small building blocks in aqueous solution, electrostatic interactions of the oppositely charged building blocks in combination with hydrophobic effect and π–π interactions play a major role in aggregate formation. Static and dynamic light scattering and small-angle neutron scattering (SANS) revealed different sizes of aggregates in the range of 2 nm ≤ R H ≤ 420 nm depending on surfactant length, concentration and of dye to surfactant loading ratio. A strong relationship of assembly size with surfactant concentration has been found, where initial surfactant monomers and micelles influence the aggregate formation differently. The stability of dye–surfactant aggregates which also shows a dependency on surfactant tail length has been related to ζ-potential measurements. Small-angle neutron scattering elucidated that dye–surfactant aggregates possess cylindrical shapes with different aspect ratios. UV/Vis spectroscopy gave information on the dye–dye π–π stacking geometry and extent, while the thermodynamic parameters for micellization and dye–surfactant binding ΔH, ΔG, and ΔS as well as stoichiometry and binding constant obtained by isothermal titration calorimetry revealed insight into the interplay of interactions.
000808417 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000808417 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000808417 588__ $$aDataset connected to CrossRef
000808417 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000808417 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000808417 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000808417 7001_ $$0P:(DE-HGF)0$$aMariani, Giacomo$$b1
000808417 7001_ $$0P:(DE-HGF)0$$aGröhn, Franziska$$b2$$eCorresponding author
000808417 773__ $$0PERI:(DE-600)1462029-7$$a10.1007/s00396-015-3814-2$$gVol. 294, no. 3, p. 591 - 606$$n3$$p591 - 606$$tColloid & polymer science$$v294$$x1435-1536$$y2016
000808417 8564_ $$uhttps://juser.fz-juelich.de/record/808417/files/art_10.1007_s00396-015-3814-2.pdf$$yRestricted
000808417 8564_ $$uhttps://juser.fz-juelich.de/record/808417/files/art_10.1007_s00396-015-3814-2.gif?subformat=icon$$xicon$$yRestricted
000808417 8564_ $$uhttps://juser.fz-juelich.de/record/808417/files/art_10.1007_s00396-015-3814-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808417 8564_ $$uhttps://juser.fz-juelich.de/record/808417/files/art_10.1007_s00396-015-3814-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808417 8564_ $$uhttps://juser.fz-juelich.de/record/808417/files/art_10.1007_s00396-015-3814-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808417 8564_ $$uhttps://juser.fz-juelich.de/record/808417/files/art_10.1007_s00396-015-3814-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808417 909CO $$ooai:juser.fz-juelich.de:808417$$pVDB$$pVDB:MLZ
000808417 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000808417 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000808417 9141_ $$y2016
000808417 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808417 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOLLOID POLYM SCI : 2014
000808417 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808417 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808417 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808417 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808417 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808417 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808417 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808417 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000808417 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808417 920__ $$lyes
000808417 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000808417 980__ $$ajournal
000808417 980__ $$aVDB
000808417 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000808417 980__ $$aUNRESTRICTED