001     808536
005     20210129222806.0
024 7 _ |2 doi
|a 10.3109/09553002.2016.1160157
024 7 _ |2 ISSN
|a 0020-7616
024 7 _ |2 ISSN
|a 0955-3002
024 7 _ |2 ISSN
|a 1362-3095
024 7 _ |2 Handle
|a 2128/16240
024 7 _ |2 WOS
|a WOS:000388629800010
037 _ _ |a FZJ-2016-02274
041 _ _ |a English
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)133468
|a Dahmen, Volker
|b 0
|u fzj
245 _ _ |a Iodine-125-labeled DNA-Triplex-forming oligonucleotides reveal increased cyto- and genotoxic effectiveness compared to Phosphorus-32
260 _ _ |a London
|b Taylor & Francis
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1513263449_28639
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a PURPOSE: The efficacy of DNA-targeting radionuclide therapies might be strongly enhanced by employing short range particle-emitters. However, the gain of effectiveness is not yet well substantiated. We compared the Auger electron emitter I-125 to the ß--emitter P-32 in terms of biological effectiveness per decay and radiation dose when located in the close proximity to DNA using DNA Triplex-forming oligonucleotides (TFO). The clonogenicity and the induction of DNA double-strand breaks (DSB) were investigated in SCL-II cells after exposure to P-32- or I-125-labeled TFO targeting the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene and after external homogeneous exposure to gamma-rays as reference radiation.MATERIALS AND METHODS: TFO were labeled with P-32 or I-125 using the primer extension method. Cell survival was analyzed by colony-forming assay and DNA damage was assessed by microscopic quantification of protein 53 binding protein 1 (53BP1) foci in SCL-II cells.RESULTS: I-125-TFO induced a pronounced decrease of cell survival (D37 at ∼360 accumulated decays per cell, equivalent to 1.22 Gy cell nucleus dose) and a significant increase of 53BP1 foci with increasing decays. The P-32-labeled TFO induced neither a strong decrease of cell survival nor an increase of 53BP1 foci up to ∼4000 accumulated decays per cell, equivalent to ∼1 Gy cell nucleus dose. The RBE for I-125-TFO was in the range of 3-4 for both biological endpoints.CONCLUSIONS: I-125-TFO proved to be much more radiotoxic than P-32-TFO per decay and per unit dose although targeting the same sequence in the GAPDH gene. This might be well explained by the high number of low energy Auger electrons emitted by I-125 per decay, leading to a high ionization density in the immediate vicinity of the decay site, probably producing highly complex DNA lesions overcharging DNA repair mechanisms.
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|a Biology
|x 0
700 1 _ |0 P:(DE-Juel1)133341
|a Pomplun, Ekkehard
|b 1
700 1 _ |0 P:(DE-Juel1)133469
|a Kriehuber, Ralf
|b 2
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1498203-1
|a 10.3109/09553002.2016.1160157
|g p. 1 - 7
|n 11
|p 679-685
|t International journal of radiation biology
|v 92
|x 0955-3002
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/808536/files/Abstract_Paper_Int-J_Radiat_Biol_2016.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808536/files/Abstract_Paper_Int-J_Radiat_Biol_2016.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808536/files/Abstract_Paper_Int-J_Radiat_Biol_2016.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808536/files/Abstract_Paper_Int-J_Radiat_Biol_2016.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808536/files/Abstract_Paper_Int-J_Radiat_Biol_2016.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808536/files/Abstract_Paper_Int-J_Radiat_Biol_2016.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:808536
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133468
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133341
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133469
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b INT J RADIAT BIOL : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)S-US-20090406
|k S-US
|l Sicherheit und Strahlenschutz, Umgebungsüberwachung,Strahlenbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)S-US-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21