000808640 001__ 808640
000808640 005__ 20210129222810.0
000808640 0247_ $$2doi$$a10.1364/OL.40.005574
000808640 0247_ $$2ISSN$$a0146-9592
000808640 0247_ $$2ISSN$$a1539-4794
000808640 0247_ $$2WOS$$aWOS:000366134100040
000808640 037__ $$aFZJ-2016-02282
000808640 041__ $$aEnglish
000808640 082__ $$a530
000808640 1001_ $$0P:(DE-Juel1)165774$$aOdstrcil, M.$$b0$$eCorresponding author$$ufzj
000808640 245__ $$aPtychographic imaging with a compact gas–discharge plasma extreme ultraviolet light source
000808640 260__ $$aWashington, DC$$bSoc.$$c2015
000808640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1460969100_13878
000808640 3367_ $$2DataCite$$aOutput Types/Journal article
000808640 3367_ $$00$$2EndNote$$aJournal Article
000808640 3367_ $$2BibTeX$$aARTICLE
000808640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808640 3367_ $$2DRIVER$$aarticle
000808640 520__ $$aWe report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas–discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab–scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas–discharge source. The ability to conduct ptychographic imaging with lab–scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method.
000808640 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000808640 588__ $$aDataset connected to CrossRef
000808640 7001_ $$0P:(DE-Juel1)162370$$aBussmann, J.$$b1$$ufzj
000808640 7001_ $$0P:(DE-HGF)0$$aRudolf, D.$$b2
000808640 7001_ $$0P:(DE-Juel1)165647$$aBresenitz, R.$$b3$$ufzj
000808640 7001_ $$0P:(DE-HGF)0$$aMiao, Jianwei$$b4
000808640 7001_ $$0P:(DE-HGF)0$$aBrocklesby, W. S.$$b5
000808640 7001_ $$0P:(DE-Juel1)157957$$aJuschkin, L.$$b6$$ufzj
000808640 773__ $$0PERI:(DE-600)1479014-2$$a10.1364/OL.40.005574$$gVol. 40, no. 23, p. 5574 -$$n23$$p5574 -$$tOptics letters$$v40$$x1539-4794$$y2015
000808640 8564_ $$uhttps://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.pdf$$yRestricted
000808640 8564_ $$uhttps://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.gif?subformat=icon$$xicon$$yRestricted
000808640 8564_ $$uhttps://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808640 8564_ $$uhttps://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808640 8564_ $$uhttps://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808640 8564_ $$uhttps://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808640 909CO $$ooai:juser.fz-juelich.de:808640$$pVDB
000808640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165774$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162370$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165647$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157957$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000808640 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000808640 9141_ $$y2016
000808640 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808640 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000808640 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT LETT : 2014
000808640 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808640 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808640 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808640 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808640 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808640 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808640 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808640 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808640 920__ $$lyes
000808640 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000808640 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000808640 980__ $$ajournal
000808640 980__ $$aVDB
000808640 980__ $$aUNRESTRICTED
000808640 980__ $$aI:(DE-Juel1)PGI-9-20110106
000808640 980__ $$aI:(DE-82)080009_20140620