001     808640
005     20210129222810.0
024 7 _ |a 10.1364/OL.40.005574
|2 doi
024 7 _ |a 0146-9592
|2 ISSN
024 7 _ |a 1539-4794
|2 ISSN
024 7 _ |a WOS:000366134100040
|2 WOS
037 _ _ |a FZJ-2016-02282
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Odstrcil, M.
|0 P:(DE-Juel1)165774
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Ptychographic imaging with a compact gas–discharge plasma extreme ultraviolet light source
260 _ _ |a Washington, DC
|c 2015
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1460969100_13878
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas–discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab–scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas–discharge source. The ability to conduct ptychographic imaging with lab–scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bussmann, J.
|0 P:(DE-Juel1)162370
|b 1
|u fzj
700 1 _ |a Rudolf, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bresenitz, R.
|0 P:(DE-Juel1)165647
|b 3
|u fzj
700 1 _ |a Miao, Jianwei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brocklesby, W. S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Juschkin, L.
|0 P:(DE-Juel1)157957
|b 6
|u fzj
773 _ _ |a 10.1364/OL.40.005574
|g Vol. 40, no. 23, p. 5574 -
|0 PERI:(DE-600)1479014-2
|n 23
|p 5574 -
|t Optics letters
|v 40
|y 2015
|x 1539-4794
856 4 _ |u https://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808640/files/ol-40-23-5574.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:808640
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165774
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162370
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165647
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157957
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21