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Abstract: We present a method for fabrication of large arrays of nano-
antennas using extreme-ultraviolet (EUV) illumination. A discharge-
produced plasma source generating EUV radiation around 10.88 nm 
wavelength is used for the illumination of a photoresist via a mask in a 
proximity printing setup. The method of metallic nanoantennas fabrication 
utilizes a bilayer photoresist and employs a lift-off process. The impact of 
Fresnel-diffraction of EUV light in the mask on a shape of the 
nanostructures has been investigated. It is shown how by the use of the 
same rectangular apertures in the transmission mask, antennas of various 
shapes can be fabricated. Using Fourier transform infrared spectroscopy, 
spectra of antennas reflectivity were measured and compared to FDTD 
simulations demonstrating good agreement. 
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1. Introduction 

Plasmonics with nanostructures has been studied extensively during the last decades [1–3]. 
The ability of nanostructures to confine light and enable its control on a subwavelength scale 
led to a variety of applications like Surface Enhanced Spectroscopy [4], plasmonic sensors 
[5,6], solar cells [7], chiral metamaterials [8,9] and medical applications like cancer therapy 
[10]. Tailoring the optical properties of metallic nano- or micro- structures in order to achieve 
a high local field enhancement at a desired illumination wavelength is beneficial for e.g. 
molecular sensing in surface enhanced Raman-Spectroscopy (SERS) and surface enhanced 
infrared absorption (SEIRA) spectroscopy [11,12]. Thus, the progress in these fields relies on 
the availability of suited fabrication methods, which offer precise shape and size control, high 
throughput and low costs. Common methods for the fabrication of nano- and microstructures 
are Electron-Beam (EBL) [13] and Focused Ion Beam (FIB) lithography [14], which offer a 
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high flexibility for the design of structure geometries and patterns at a high resolution of a 
few tens of nanometers. However, both EBL and FIB suffer from a slow serial writing 
process and thus have a relatively low throughput and comparably high costs. 

Recently, several lithographic approaches to improve throughput and to lower costs by 
using parallel fabrication processes were introduced. Nanosphere Lithography (NSL) can use 
self assembled nano- [15] and micrometer-sized [16] spheres as a shadow-mask for metal 
evaporation and the fabrication of hexagonally arranged antennas. Nanospherical-lens 
Lithography uses self-assembled polysterene beads to focus UV-light and create large-area, 
sub 100 nm Au nanodisc arrays [17]. Hole-Mask Colloidal Nanolithography uses 
immobilized, well separated polysterene spheres to create a mask for tilted-angle evaporation 
and the large-area fabrication of various split ring structures [18]. A disadvantage of methods 
using nano- or microspheres as evaporation mask is a limited control over the self-assembly 
of the spheres and thus insufficient flexibility in pattern design. Lift-off free evaporation 
methods, e.g. Nanostencil-Lithography, make use of EBL to create a reusable mask for metal 
evaporation [19,20]. Hereby, a change of structure geometry requires the fabrication of a new 
mask using serial lithography methods. 

These recently developed methods seek to circumvent a serial fabrication process at a cost 
of flexibility in structure or pattern design. In contrast to that, the recent approach of Laser 
Interference Lithography is a promising method, which offers the large-area, fast and flexible 
fabrication of metallic antennas with resonances in the near- and mid-IR spectral range [21]. 
Though, with this method, no single structures can be fabricated and for more complicated 
structure geometries and thus for different applications and desired properties such as e.g. 
multi-band SEIRA [22] and chirality [8], this fabrication method has yet to prove its 
capabilities. Also recently, the possibility to fabricate large arrays of linear antennas by using 
direct laser writing has been shown [23]. Although this method belongs to the serial 
fabrication techniques, it might, besides the limited resolution, also enable a fast and flexible 
fabrication of nearly arbitrary shaped infrared antennas over several mm

2. 
As an alternative method, we present Extreme Ultraviolet (EUV) Proximity Lithography 

as a fabrication technique that offers a fast, flexible and parallel fabrication of many 
microstructures suited for SEIRA. In contrast to standard UV lithography, a patterning of a 
variety of structures by using only a single transmission mask is possible. In a previous 
publication [24], we already demonstrated how Fresnel diffraction could affect the exposure 
results. Exemplary patterned photoresists revealed complex structure geometries that are 
predicted by simulations. Now, we adapt a process for transferring the positive tone 
photoresist pattern of several complex structures into a suitable antenna material. Finally, 
selected arrays of antennas are characterized via FTIR reflectance measurements. The 
obtained experimental results are compared to simulations. With this we demonstrate the 
feasibility of this new fabrication technique to enable the fabrication of complex structure 
geometries, small feature-sizes and the fast processing of large substrate areas. Also different 
substrate materials may be employed in this method. 

2. EUV proximity lithography 

2.1 Fabrication technology 

The principle of operation of the presented lithography tool is depicted in Fig. 1. EUV-
radiation emitted by a gas-discharge source and collimated by a pinhole illuminates a 
transmission mask. The photoresist-coated wafer is brought into close proximity to the mask 
to enable proximity printing of the photoresist. The mask is attached to a precise-motion 
holder for controlling mask-wafer alignment and positioning. The entire setup is placed inside 
a vacuum chamber to avoid absorption of EUV radiation by ambient atmosphere. At the 
edges of the mask holder, three capacitive proximity sensors are installed for monitoring of 
the distance between mask and wafer also called the proximity gap. 
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Fig. 1. Schematics and photograph of the lithography tool used for illumination. The EUV 
source operates at a wavelength of 10.88 nm, illuminating the photoresist through a mask 
containing the antenna design. The proximity gap can be tuned in the range of few 
micrometers to several tens of micrometers. 

The gas discharge-produced plasma source was developed at the Fraunhofer Institute for 
Laser Technology and is described in [25,26]. EUV radiation in such type of sources is 
produced by spectral line emission from highly ionized atoms of the discharge carrier, such as 
Xe, Ar and other gases. By using gas mixtures of Xe and Ar, along with appropriate band-
pass spectral filtering, the spectrum with maximum emission at 10.88 nm with a bandwidth of 
3.4% is obtained [27]. 

The transmission mask technology has been reported before in [28]. The mask consists of 
a combination of a 100-nm-thick EUV transmissive Nb layer and a 60-nm-thick strongly 
opaque Ni layer serving as the absorber. This absorbing layer is structured according to the 
design of the antennas. The mask area, manufactured by this technology, can be as large as 
2x2 mm2, enabling parallel structuring of nanoarrays. The wafer is spring-loaded onto the 
holding frame and positioned in the mask’s close proximity. By using the proximity sensor 
signal, the wafer and the mask planes can be aligned with respect to each other. The smallest 
proximity gap is usually of a few micrometers due to technical limitations like unevenness of 
mask or wafer or imperfect planar alignment between them. The pattern printed into the resist 
is thus modified by near-field diffraction. The diffraction pattern produced by the mask 
structures has been simulated and compared to exposure results in photoresist [24]. It was 
suggested that the diffraction pattern could enable the fabrication of different structures with 
the same mask by varying parameters such as exposure, distance and period of the structures. 
Here we report on the fabrication and characterization of such structures. Also a functionality 
of the antenna arrays was demonstrated using FTIR spectroscopy. 

2.2 The bilayer technique 

After resist structuring, the pattern has to be transferred into a suitable antenna material such 
as gold. We used a lift-off process, which has the advantage that it is applicable to any 
antenna material since the photoresist is patterned on the bare substrate and the functional 
layer is subsequently deposited. 

Lift-off fabrication requires the sidewalls of the structured resist being negatively sloped, 
i.e. features must be broader at the bottom than at the top. Since the strong absorption of EUV 
radiation in matter causes the dose reaching deeper regions of the resist layer to be smaller, 
the developed features are narrower at the bottom than at the top for positive resists. This 
problem was addressed by using a stack of different resists. In the bilayer scheme, the bottom 
layer consists of a resist that has a higher sensitivity than the resist used for the top layer. This 
means it requires a smaller dose than the layer above, so it will develop a wider pattern at the 
same dose. If the resist layers are thin enough the dose reduction through absorption can be 
compensated through the higher sensitivity. Accordingly, we used a well-established stack of 
PMMA resists [29] and adapted the layer thicknesses to be as thin as possible. It is necessary 
to keep in mind that the thickness of material deposited after resist structuring should not 
have more than half the thickness of the lower resist layer. 
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First the bottom resist, a PMMA/MA copolymer (AR-P 617 [29]) with a solid fraction of 
1,5%, is deposited by spin-coating at 6000 rpm onto a 2”-silicon wafer. This is followed by a 
10 minutes bake on a hotplate at 200°C. Then the upper layer, the PMMA resist (AR-P 679 
PMMA 950K [29]) with a solid fraction of 1%, is spun onto the wafer also at 6000 rpm. Then 
the wafer is put onto the hotplate for another 5 minutes at 180°C. The wafer is then 
illuminated and subsequently developed in a mixture of MIBK:IPA = 1:3 (AR-P 600-55 [29]) 
for 1 min. Development is stopped by immersing the wafer for 30 s in IPA and cleaning it in a 
DI-water bath. A few nanometer thick adhesion layer of Cr and subsequently a layer of Au 
are evaporated onto the wafer (Leybold L560 Physical Vapor Deposition System). The total 
metal thickness was determined to be 26.3 nm by AFM measurements. Lifting off the 
photoresist is done with a remover, which is especially suited for metallized resists (AR 300-
70 [29]). The remover is heated to 60°C and with mild ultrasound agitation the resist layer 
can be fully removed without lifting off the antennas themselves. The wafer is finally cleaned 
with IPA and DI-water. 

 

Fig. 2. Structure formation using circular and equilateral triangular apertures: In (a) and (d), 
schematics of the mask with diameter or length and period of the apertures is shown. In (b) and 
(c), SEM images of the wafer structures emerging from circular apertures with 16 min and 22 
min exposure time, respectively. In (e) and (f), SEM images of the structures emerging from 
equilateral triangular apertures with 16 min and 20 min exposure time, respectively. All scale 
bars correspond to a length of 5 µm. 

3. Results 

3.1 Fabrication 

We applied EUV lithography as described above using a single transmission mask with 
different aperture patterns in order to fabricate arrays of complex metallic structures. Varying 
the exposure times we manage to fabricate significantly different structure geometries that 
can substantially modify optical properties. First column in the Fig. 2 shows the patterns of 
the used transmission mask with arrays of (a) circular and (d) triangular apertures. The SEM 
images of resulting metallic structures in Fig. 2(b) and 2(c) correspond to the aperture 
geometry given in (a) and differ in the exposure time, which is 16 min and 22 min, 
respectively. With the increased exposure time in (c), the dot structures that can be seen in (b) 
become larger and a secondary fringe of the Fresnel interference pattern becomes visible as 
an additional outer ring. Similarly, the SEM images in (e) and (f) correspond to the triangular 
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aperture geometry given in (d) and exposure times of 16 min and 20 min, respectively. For 
exposure times lower than indicated in the figures, only the inner structure from figures (b) 
and (e) was observed without secondary structures. For the chosen exposure time, the finer 
structures in (b) resulting from higher order Fresnel diffraction are either not transferred into 
the resist or fully removed during liftoff, while in (e) they are partially present. For 20 min 
EUV exposures, the smaller structures can be successfully converted into metallic structures 
with a high homogeneity. Examples in Fig. 2 underline the potential of EUV lithography for a 
high flexibility in fabrication of high quality metallic structures. 

In the following investigations we focused on structures fabricated with 230 nm wide rod-
shaped apertures. A schematic of the used mask is shown in Fig. 3(a) with indicated 
parameters. As described in the previous publication [24], we simulate the aerial image 
behind the mask aperture with the Dr. Fresnel software package for contact and proximity 
printing (part of the Dr. Litho tool for lithography simulation [30,31]). In Fig. 3(b) and 3(c) 
the simulated intensity distributions of two different aperture arrays are shown. Since the 
actual distance between the mask and the sample surface is not exactly known, the proximity 
gaps were chosen so that a good match with regard to the shape of the antenna can be found. 
We have to note that the simulation relies on several assumptions and approximations. For 
example, the illumination spectrum in experiments may deviate from that used in simulations. 
Also the simulation model uses the Rayleigh-Sommerfeld diffraction integral of the first type 
(RSI) and therefore approximates the mask as a two-dimensional binary aperture. Since the 
mask is around 160 nm thick, i.e. several wavelengths scale, and also features some uneven 
surface topography, these may result in differences between simulation and experimental 
results. Nevertheless, we find a good agreement between shapes of the simulated structures 
and the electron microscope images of the fabricated nanoantennas (Fig. 3(d)-3(f)) that were 
created by EUV exposures. The SEM images in Fig (d) and (e) show antennas that result 
from the same array. A difference between them is the illumination time: the case shown in 
(e) was exposed 2 minutes longer compared to (d). In the simulations that are shown as insets 
in the corresponding SEM images, this is realized by different threshold values imposed to 
the intensity distributions. For longer illumination time in (e), the threshold intensity value 
was decreased compared to that in (d). The shapes of fabricated antennas and those in the 
simulations agree fairly well. This is also the case in Fig. 3(f), where a slightly different 
aperture geometry and period of the mask pattern is used. 
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Fig. 3. Structure formation using rod-shaped apertures: In (a), a schematic of the mask with 
length, width and period of the rectangular apertures is shown. The width of the apertures is 
0.23 µm and the length, period and illumination time varies as indicated. Simulated intensity 
distributions are shown in (b) with 10 µm and in (c) with 6 µm distance to the aperture plane, 
respectively. In (d) - (f), SEM images of the metallic structures are presented. The insets show 
the results of the thresholded simulations. (b) corresponds to (d) and (e) with different 
thresholds and (c) corresponds to (f). All scale bars correspond to a length of 500 nm. 

3.2 Measurements of spectral reflectivity of the antenna arrays 

The fabricated structures have been characterized by FTIR. The reflection measurements of 
the different antenna arrays are performed in the mid-IR spectral range using a Bruker Vertex 
70 spectrometer and a Hyperion 2000 microscope using a knife-edge aperture with the size of 
50 x 50 µm2 and a 36x objective. A polarizer is used to decompose the response of the long 
and the short axis, respectively. All reflection spectra are normalized to the reflection of the 
bare substrate next to the antenna arrays. The experimentally obtained spectra are shown in 
Fig. 4(a)-4(c). The main resonances related to the excitation of dipole-like charge carrier 
oscillations along the long axis of the three structures occur for wavelengths in the range of 5-
8 µm (red curves). Water absorption lines between 6 and 7 µm cause the spectra to be slightly 
noisy. Additionally, the excitation of the surface phonon polaritons at the native silicon oxide 
layer causes a distorted lineshape around 8 µm [32,33]. At one third of the fundamental 
resonance wavelength, i.e. at around 2 µm, a higher order mode can be observed. Aligning the 
polarization direction along the short axis of the antennas leads to a resonance between 2 and 
4 µm, which can be attributed to resonant dipole-like excitations of charge carrier oscillations 
in the ellipsoidal ends of the structures (black dashed curves). The different resonance 
positions for the two polarization directions turn the structures to be suited for multi-band 
enhanced spectroscopy [23,34]. Especially advantageous is the fact that the geometry and, 
thus, the resonance positions of the structures can easily be altered by a change of the 
exposure time without changing the mask. 

The resonances for both long and short axis are well reproduced by the FDTD calculations 
in Fig. 4(d)-4(f). These calculations are made with “Lumerical” software package, a 
commercially available FDTD solver. In the simulations, the antenna arrays are simulated 
with a unit cell consisting of 25 nm thick Au antenna (the thin Cr layer is neglected) with 
periodic boundaries. The structure dimensions are based on mean values obtained from SEM 
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images shown in Fig. 3(a)-3(c). The silicon substrate is modeled as dielectric material with a 
constant refractive index of 3.4. A Drude model was used to model the dielectric data of gold 
in this spectral range. The overall mesh grid was defined as 25 mesh cells per wavelength. 
Subgridding methods are used to refine locally the mesh cells down to 2 nm. Acceptable 

convergence is ensured by defining an auto shutoff level of 10−3 for the E-field decay in the 
simulation region [35]. Linearly polarized collimated light is normally incident onto the 
antenna arrays in order to obtain a broadband spectrum in a single simulation run. During the 
measurements, however, the light is focused with a 36x Schwarzschild-objective (NA = 0.5) 
that causes incident angles ranging from 10°-30°. Differences between measurement and 
simulation can be seen e.g. at a wavelength of 4.8 µm in the red curve of Fig. 4(d). This slight 
buckle that occurs in the simulation is not visible in the measurement and can be attributed to 
higher grating order. Different grating orders are present in the simulated spectra of the 
periodic antenna arrays, due to the collimated light in the simulations. They are sharper and 
located at slightly different spectral positions for the FDTD calculations compared to the 
angle-averaged FTIR microscope measurements [35]. In Fig. 4(d) and 4(e), e.g. the first 
grating order in respect to the silicon substrate occurs at around 4.8 µm and is visible as a 
slight buckle. In Fig. 4(f), the first grating order is shifted a bit more to the red due to the 
higher periodicity of this antenna array of 1.6 µm compared to 1.4 µm periods in 4(d) and 
4(e). In the measurements, the presence of these grating orders is hardly visible due to the 
angle-averaging. Nevertheless, the spectral positions of the resonances as well as the overall 
lineshape can be reproduced satisfactorily by the FDTD simulations. 

Our previous work showed the flexibility of this method, with which using a simple mask 
geometry one can produce a wide variety of possible antennae structures [24], especially if 
both proximity distance and exposure time are varied. This work concentrates mostly on the 
exposure time control without intentional changes to the proximity distance. Even in this case 
it was demonstrated that significant changes of size and form of the structures are easily 
realized. This allows fine-tuning of the resonance frequency within ~20% bandwidth. 
Moreover, the present work establishes robust transfer procedure from the relatively thin 
EUV exposed resist to metallic structures and demonstrates also for the first time IR 
resonance behavior of the antennae fabricated by this method. Together with a good 
agreement between experimental and simulation results, both for EUV mask diffraction and 
IR reflection calculation, this opens a way to fabrication of large-area arrays of structures 
with pre-programmed resonance properties. 
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Fig. 4. Measured (a)-(c) and calculated (d)-(f) reflection spectra of the structures shown in Fig. 
3 (d)-(f).The structure outlines are indicated above and the coloured arrows relate the spectra 
to the used polarisation directions. Red spectra correspond to a polarisation along the long axis 
and black dashed spectra to a polarisation along the short axis of the antennas, respectively. 

4. Summary and outlook 

We have demonstrated a new method for fast and flexible parallel fabrication of arrays of 
infrared antennas. Using a gas-discharge source and transmission masks with circular, 
triangular and rectangular aperture arrays, a bilayer stack of PMMA photoresists was 
illuminated with EUV radiation. Subsequent deposition of chromium and gold followed by a 
lift-off procedure resulted in arrays of nanoantennae with different shapes. Rectangular 
apertures on the mask result in a dumbbell-like shape of the antennae. Changes of exposure 
times and array periods result in significant variations of this geometry. FTIR reflection 
spectra of the antennas were obtained and compared to FDTD simulations demonstrating also 
a good agreement. 

Future investigations will address the fabrication using various substrate materials in order 
to demonstrate an even higher flexibility of this fabrication method. As already described in 
[23], we plan to employ optical proximity correction techniques in order to enhance the 
resolution and improve our ability to design more complex antenna geometries. A direct 
etching method compared to the bilayer resist process could also significantly improve the 
homogeneity over large areas. Furthermore, with our ultra-short EUV wavelength we are not 
limited to fabrication of micrometer-sized antennas shown here. The presented method might 
also have a large impact on surface-enhanced spectroscopy when arrays of smaller structures 
will be realized to enable Surface Enhanced Raman Spectroscopy (SERS) [5]. 
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