000808658 001__ 808658
000808658 005__ 20240711092303.0
000808658 0247_ $$2doi$$a10.1016/j.jmps.2016.01.009
000808658 0247_ $$2ISSN$$a0022-5096
000808658 0247_ $$2ISSN$$a1873-4782
000808658 0247_ $$2WOS$$aWOS:000374355900009
000808658 0247_ $$2altmetric$$aaltmetric:4233774
000808658 037__ $$aFZJ-2016-02291
000808658 082__ $$a530
000808658 1001_ $$0P:(DE-Juel1)130567$$aBrener, Efim$$b0$$eCorresponding author$$ufzj
000808658 245__ $$aDynamic Instabilities of Frictional Sliding at a Bimaterial Interface
000808658 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000808658 3367_ $$2DRIVER$$aarticle
000808658 3367_ $$2DataCite$$aOutput Types/Journal article
000808658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481710638_12861
000808658 3367_ $$2BibTeX$$aARTICLE
000808658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808658 3367_ $$00$$2EndNote$$aJournal Article
000808658 520__ $$aUnderstanding the dynamic stability of bodies in frictional contact steadily sliding one over the other is of basic interest in various disciplines such as physics, solid mechanics, materials science and geophysics. Here we report on a two-dimensional linear stability analysis of a deformable solid of a finite height H, steadily sliding on top of a rigid solid within a generic rate-and-state friction type constitutive framework, fully accounting for elastodynamic effects. We derive the linear stability spectrum, quantifying the interplay between stabilization related to the frictional constitutive law and destabilization related both to the elastodynamic bi-material coupling between normal stress variations and interfacial slip, and to finite size effects. The stabilizing effects related to the frictional constitutive law include velocity-strengthening friction (i.e. an increase in frictional resistance with increasing slip velocity, both instantaneous and under steady-state conditions) and a regularized response to normal stress variations. We first consider the small wave-number k   limit and demonstrate that homogeneous sliding in this case is universally unstable, independent of the details of the friction law. This universal instability is mediated by propagating waveguide-like modes, whose fastest growing mode is characterized by a wave-number satisfying kH∼O(1)kH∼O(1) and by a growth rate that scales with H−1. We then consider the limit kH→∞kH→∞ and derive the stability phase diagram in this case. We show that the dominant instability mode travels at nearly the dilatational wave-speed in the opposite direction to the sliding direction. In a certain parameter range this instability is manifested through unstable modes at all wave-numbers, yet the frictional response is shown to be mathematically well-posed. Instability modes which travel at nearly the shear wave-speed in the sliding direction also exist in some range of physical parameters. Previous results obtained in the quasi-static regime appear relevant only within a narrow region of the parameter space. Finally, we show that a finite-time regularized response to normal stress variations, within the framework of generalized rate-and-state friction models, tends to promote stability. The relevance of our results to the rupture of bi-material interfaces is briefly discussed
000808658 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000808658 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x1
000808658 588__ $$aDataset connected to CrossRef
000808658 7001_ $$0P:(DE-HGF)0$$aWeikamp, Marc$$b1
000808658 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b2$$eCorresponding author
000808658 7001_ $$0P:(DE-HGF)0$$aBar-Sinai, Yohai$$b3
000808658 7001_ $$0P:(DE-HGF)0$$aBouchbinder, Eran$$b4
000808658 773__ $$0PERI:(DE-600)2012341-3$$a10.1016/j.jmps.2016.01.009$$gVol. 89, p. 149 - 173$$p149 - 173$$tJournal of the mechanics and physics of solids$$v89$$x0022-5096$$y2016
000808658 8564_ $$uhttps://juser.fz-juelich.de/record/808658/files/1-s2.0-S0022509616300370-main.pdf$$yRestricted
000808658 8564_ $$uhttps://juser.fz-juelich.de/record/808658/files/1-s2.0-S0022509616300370-main.gif?subformat=icon$$xicon$$yRestricted
000808658 8564_ $$uhttps://juser.fz-juelich.de/record/808658/files/1-s2.0-S0022509616300370-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808658 8564_ $$uhttps://juser.fz-juelich.de/record/808658/files/1-s2.0-S0022509616300370-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808658 8564_ $$uhttps://juser.fz-juelich.de/record/808658/files/1-s2.0-S0022509616300370-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808658 8564_ $$uhttps://juser.fz-juelich.de/record/808658/files/1-s2.0-S0022509616300370-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808658 909CO $$ooai:juser.fz-juelich.de:808658$$pVDB
000808658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808658 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000808658 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000808658 9141_ $$y2016
000808658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808658 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000808658 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MECH PHYS SOLIDS : 2014
000808658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808658 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808658 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808658 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808658 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808658 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808658 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000808658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808658 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000808658 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000808658 980__ $$ajournal
000808658 980__ $$aVDB
000808658 980__ $$aI:(DE-Juel1)PGI-2-20110106
000808658 980__ $$aI:(DE-Juel1)IEK-2-20101013
000808658 980__ $$aUNRESTRICTED
000808658 981__ $$aI:(DE-Juel1)IMD-1-20101013
000808658 981__ $$aI:(DE-Juel1)IEK-2-20101013