001     808661
005     20240711113954.0
024 7 _ |2 doi
|a 10.1088/0031-8949/T167/1/014056
024 7 _ |a WOS:000383504700057
|2 WOS
037 _ _ |a FZJ-2016-02294
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)129778
|a Pintsuk, Gerald
|b 0
|e Corresponding author
245 _ _ |a Manufacturing and Characterization of PIM-W Materials as Plasma Facing Materials
260 _ _ |a Bristol
|b IoP Publ.
|c 2016
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1460978839_13869
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Powder injection molding (PIM) was used to produce pure and particle reinforced W materials to be qualified for the use as plasma facing material. As alloying elements La2O3, Y2O3, TiC, and TaC were chosen with a particle size between 50 nm and 2.5 μm, depending on the alloying element. The fabrication of alloyed materials was done for different compositions using powder mixtures. Final sintering was performed in H2 atmosphere at 2400 °C resulting in plates of 55 × 22 × 4 mm3 with ~98% theoretical density. The qualification of the materials was done via high heat flux testing in the electron beam facility JUDITH-1. Thereby, ELM-like 1000 thermal shock loads of 0.38 GW m−2 for 1 ms and 100 disruption like loads of 1.13 GW m−2 for 1 ms at a base temperature of 1000 °C were applied. The obtained damage characteristics, i.e. surface roughening and crack formation, were qualified versus an industrially manufactured pure reference tungsten material and linked to the material's microstructure and mechanical properties.
536 _ _ |0 G:(DE-HGF)POF3-174
|a 174 - Plasma-Wall-Interaction (POF3-174)
|c POF3-174
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Antusch, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Rieth, M.
|b 2
700 1 _ |0 P:(DE-Juel1)129811
|a Wirtz, Marius
|b 3
773 _ _ |0 PERI:(DE-600)1477351-x
|a 10.1088/0031-8949/T167/1/014056
|p 014056
|t Physica scripta
|v T167
|x 0031-8949
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/808661/files/ps16_t167_014056.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808661/files/ps16_t167_014056.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:808661
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129778
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129811
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-174
|1 G:(DE-HGF)POF3-170
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Kernfusion
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21