000808668 001__ 808668
000808668 005__ 20240711092303.0
000808668 0247_ $$2doi$$a10.1088/0953-8984/28/13/135102
000808668 0247_ $$2ISSN$$a0953-8984
000808668 0247_ $$2ISSN$$a1361-648X
000808668 0247_ $$2WOS$$aWOS:000371905200016
000808668 037__ $$aFZJ-2016-02301
000808668 082__ $$a530
000808668 1001_ $$0P:(DE-HGF)0$$aLiu, Maoyuan$$b0
000808668 245__ $$aFrom Atomic Structure to Excess Entropy: A Neutron Diffraction and Density Functional Theory Study of CaO−Al$_{2}$ O$_{3}$ −SiO$_{2}$ Melts
000808668 260__ $$aBristol$$bIOP Publ.$$c2016
000808668 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1460981160_13877
000808668 3367_ $$2DataCite$$aOutput Types/Journal article
000808668 3367_ $$00$$2EndNote$$aJournal Article
000808668 3367_ $$2BibTeX$$aARTICLE
000808668 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808668 3367_ $$2DRIVER$$aarticle
000808668 520__ $$aCalcium aluminosilicate $\text{CaO}-\text{A}{{\text{l}}_{2}}{{\text{O}}_{3}}-\text{Si}{{\text{O}}_{2}}$ (CAS) melts with compositions ${{\left(\text{CaO}-\text{Si}{{\text{O}}_{2}}\right)}_{x}}{{\left(\text{A}{{\text{l}}_{2}}{{\text{O}}_{3}}\right)}_{1-x}}$ for x  <  0.5 and ${{\left(\text{A}{{\text{l}}_{2}}{{\text{O}}_{3}}\right)}_{x}}{{\left(\text{Si}{{\text{O}}_{2}}\right)}_{1-x}}$ for $x\geqslant 0.5$ are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O–M–O or M–O–M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.
000808668 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000808668 588__ $$aDataset connected to CrossRef
000808668 7001_ $$0P:(DE-HGF)0$$aJacob, Aurélie$$b1$$eCorresponding author
000808668 7001_ $$0P:(DE-Juel1)136940$$aSchmetterer, Clemens$$b2
000808668 7001_ $$0P:(DE-HGF)0$$aMasset, Patrick J$$b3
000808668 7001_ $$0P:(DE-HGF)0$$aHennet, Louis$$b4
000808668 7001_ $$0P:(DE-HGF)0$$aFischer, Henry E$$b5
000808668 7001_ $$0P:(DE-HGF)0$$aKozaily, Jad$$b6
000808668 7001_ $$0P:(DE-HGF)0$$aJahn, Sandro$$b7
000808668 7001_ $$0P:(DE-HGF)0$$aGray-Weale, Angus$$b8
000808668 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/28/13/135102$$gVol. 28, no. 13, p. 135102 -$$n13$$p135102$$tJournal of physics / Condensed matter$$v28$$x1361-648X$$y2016
000808668 8564_ $$uhttps://juser.fz-juelich.de/record/808668/files/cm_28_13_135102.pdf$$yRestricted
000808668 8564_ $$uhttps://juser.fz-juelich.de/record/808668/files/cm_28_13_135102.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808668 909CO $$ooai:juser.fz-juelich.de:808668$$pVDB
000808668 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000808668 9141_ $$y2016
000808668 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808668 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2014
000808668 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808668 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808668 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808668 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808668 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808668 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808668 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808668 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000808668 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808668 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000808668 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808668 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000808668 980__ $$ajournal
000808668 980__ $$aVDB
000808668 980__ $$aUNRESTRICTED
000808668 980__ $$aI:(DE-Juel1)IEK-2-20101013
000808668 981__ $$aI:(DE-Juel1)IMD-1-20101013