000808671 001__ 808671
000808671 005__ 20240711092303.0
000808671 0247_ $$2doi$$a10.1016/j.ijhydene.2015.10.075
000808671 0247_ $$2WOS$$aWOS:000368955300059
000808671 037__ $$aFZJ-2016-02304
000808671 082__ $$a660
000808671 1001_ $$0P:(DE-HGF)0$$aVasechko, V.$$b0
000808671 245__ $$aMechanical Properties of Porous ITM Alloy
000808671 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000808671 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1460984200_13878
000808671 3367_ $$2DataCite$$aOutput Types/Journal article
000808671 3367_ $$00$$2EndNote$$aJournal Article
000808671 3367_ $$2BibTeX$$aARTICLE
000808671 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808671 3367_ $$2DRIVER$$aarticle
000808671 520__ $$aMechanical characteristics of porous ITM are assessed for the use as metallic substrate in solid oxide fuel cell stacks. Elastic modulus and Poisson's ratio are determined using an impulse excitation technique, thermal expansion is measured with an optical dilatometer, and ultimate tensile strength and creep are measured in a tensile set-up. Data are compared and discussed with respect to the properties of dense ITM. The results indicate that the coefficient of thermal expansion is not affected by the porosity, while the Poisson's ratio is only affected to a minor extent. The coefficient of thermal expansion and elastic modulus appear to be influenced by a ferromagnetic-paramagnetic transition. The elastic modulus of the porous material is, as expected, reduced due to smaller effective area of the porous specimens. The largest change compared to the behavior observed for the dense ITM is seen for the ultimate tensile strength. The large creep stress exponent of the dense and porous material over a wide stress range is a result of the dispersed nano-sized Y-rich phase, however, 
000808671 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000808671 7001_ $$0P:(DE-HGF)0$$aPecanac, G.$$b1
000808671 7001_ $$0P:(DE-Juel1)129742$$aKuhn, Bernd$$b2$$ufzj
000808671 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b3$$eCorresponding author$$ufzj
000808671 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2015.10.075$$p562-569$$tInternational journal of hydrogen energy$$v41$$x0360-3199$$y2016
000808671 8564_ $$uhttps://juser.fz-juelich.de/record/808671/files/1-s2.0-S0360319915300136-main.pdf$$yRestricted
000808671 8564_ $$uhttps://juser.fz-juelich.de/record/808671/files/1-s2.0-S0360319915300136-main.gif?subformat=icon$$xicon$$yRestricted
000808671 8564_ $$uhttps://juser.fz-juelich.de/record/808671/files/1-s2.0-S0360319915300136-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808671 8564_ $$uhttps://juser.fz-juelich.de/record/808671/files/1-s2.0-S0360319915300136-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808671 8564_ $$uhttps://juser.fz-juelich.de/record/808671/files/1-s2.0-S0360319915300136-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808671 8564_ $$uhttps://juser.fz-juelich.de/record/808671/files/1-s2.0-S0360319915300136-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808671 909CO $$ooai:juser.fz-juelich.de:808671$$pVDB
000808671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808671 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000808671 9141_ $$y2016
000808671 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808671 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000808671 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2014
000808671 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808671 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808671 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808671 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808671 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808671 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808671 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808671 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808671 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000808671 980__ $$ajournal
000808671 980__ $$aVDB
000808671 980__ $$aUNRESTRICTED
000808671 980__ $$aI:(DE-Juel1)IEK-2-20101013
000808671 981__ $$aI:(DE-Juel1)IMD-1-20101013