000808697 001__ 808697
000808697 005__ 20240711092234.0
000808697 0247_ $$2doi$$a10.1021/acs.iecr.5b03991
000808697 0247_ $$2WOS$$aWOS:000374274200001
000808697 0247_ $$2altmetric$$aaltmetric:6394694
000808697 037__ $$aFZJ-2016-02324
000808697 082__ $$a540
000808697 1001_ $$0P:(DE-Juel1)164190$$aRoller, David$$b0
000808697 245__ $$aRemoval of Hydrogen Sulphide by Metal-Doped Nanotitanate Under Gasification Like Conditions
000808697 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2016
000808697 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1461133958_9235
000808697 3367_ $$2DataCite$$aOutput Types/Journal article
000808697 3367_ $$00$$2EndNote$$aJournal Article
000808697 3367_ $$2BibTeX$$aARTICLE
000808697 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808697 3367_ $$2DRIVER$$aarticle
000808697 520__ $$aA comparative study between nanotitanate doped with different metals (copper, copper–chromium, and cerium) is executed under gasification conditions in order to investigate their maximum H2S removal ability and their breakthrough behavior. Therefore, the sorbent is placed in a fixed-bed reactor and exposed to the H2S containing gas flow at temperatures ranging from 75 to 950 °C. Online analysis is done by a mass spectrometer. The sorbents are also tested by the offline analytical techniques X-ray diffraction (XRD) and scanning electron microscopy (SEM) after the experiments to provide detailed information about their elemental and crystalline composition. The results indicate Cu-ETS-2 as the most effective H2S-scrubber among the tested sorbents. The lowest H2S concentration in the outlet gas is always achieved in water rich gas. Additionally, the H2S capacity is nearly always higher for the water rich gas than in the hydrogen rich gas.
000808697 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000808697 7001_ $$0P:(DE-Juel1)129688$$aBläsing, Marc$$b1$$eCorresponding author
000808697 7001_ $$0P:(DE-Juel1)129705$$aDreger, Inge$$b2
000808697 7001_ $$0P:(DE-HGF)0$$aYazdanbakhsh, F.$$b3
000808697 7001_ $$0P:(DE-HGF)0$$aSawada, J.$$b4
000808697 7001_ $$0P:(DE-HGF)0$$aKuznicki, S.$$b5
000808697 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b6
000808697 773__ $$0PERI:(DE-600)1484436-9$$a10.1021/acs.iecr.5b03991$$n14$$p3871-3878$$tIndustrial & engineering chemistry research$$v55$$x0888-5885$$y2016
000808697 8564_ $$uhttps://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.pdf$$yRestricted
000808697 8564_ $$uhttps://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.gif?subformat=icon$$xicon$$yRestricted
000808697 8564_ $$uhttps://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808697 8564_ $$uhttps://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808697 8564_ $$uhttps://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808697 8564_ $$uhttps://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808697 909CO $$ooai:juser.fz-juelich.de:808697$$pVDB
000808697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129688$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129705$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000808697 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000808697 9141_ $$y2016
000808697 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808697 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000808697 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIND ENG CHEM RES : 2014
000808697 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808697 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808697 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808697 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808697 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808697 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808697 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808697 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000808697 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808697 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000808697 980__ $$ajournal
000808697 980__ $$aVDB
000808697 980__ $$aUNRESTRICTED
000808697 980__ $$aI:(DE-Juel1)IEK-2-20101013
000808697 981__ $$aI:(DE-Juel1)IMD-1-20101013