001     808697
005     20240711092234.0
024 7 _ |a 10.1021/acs.iecr.5b03991
|2 doi
024 7 _ |a WOS:000374274200001
|2 WOS
024 7 _ |a altmetric:6394694
|2 altmetric
037 _ _ |a FZJ-2016-02324
082 _ _ |a 540
100 1 _ |a Roller, David
|0 P:(DE-Juel1)164190
|b 0
245 _ _ |a Removal of Hydrogen Sulphide by Metal-Doped Nanotitanate Under Gasification Like Conditions
260 _ _ |a Columbus, Ohio
|c 2016
|b American Chemical Society
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1461133958_9235
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A comparative study between nanotitanate doped with different metals (copper, copper–chromium, and cerium) is executed under gasification conditions in order to investigate their maximum H2S removal ability and their breakthrough behavior. Therefore, the sorbent is placed in a fixed-bed reactor and exposed to the H2S containing gas flow at temperatures ranging from 75 to 950 °C. Online analysis is done by a mass spectrometer. The sorbents are also tested by the offline analytical techniques X-ray diffraction (XRD) and scanning electron microscopy (SEM) after the experiments to provide detailed information about their elemental and crystalline composition. The results indicate Cu-ETS-2 as the most effective H2S-scrubber among the tested sorbents. The lowest H2S concentration in the outlet gas is always achieved in water rich gas. Additionally, the H2S capacity is nearly always higher for the water rich gas than in the hydrogen rich gas.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
700 1 _ |a Bläsing, Marc
|0 P:(DE-Juel1)129688
|b 1
|e Corresponding author
700 1 _ |a Dreger, Inge
|0 P:(DE-Juel1)129705
|b 2
700 1 _ |a Yazdanbakhsh, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sawada, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kuznicki, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 6
773 _ _ |a 10.1021/acs.iecr.5b03991
|0 PERI:(DE-600)1484436-9
|n 14
|p 3871-3878
|t Industrial & engineering chemistry research
|v 55
|y 2016
|x 0888-5885
856 4 _ |u https://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808697/files/acs.iecr.5b03991.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:808697
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129688
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129705
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IND ENG CHEM RES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21