000808720 001__ 808720
000808720 005__ 20240619091206.0
000808720 0247_ $$2doi$$a10.1039/C6NR00824K
000808720 0247_ $$2ISSN$$a2040-3364
000808720 0247_ $$2ISSN$$a2040-3372
000808720 0247_ $$2Handle$$a2128/11968
000808720 0247_ $$2WOS$$aWOS:000381815000016
000808720 037__ $$aFZJ-2016-02347
000808720 041__ $$aEnglish
000808720 082__ $$a600
000808720 1001_ $$0P:(DE-HGF)0$$aBaeumer, C.$$b0$$eCorresponding author
000808720 245__ $$aVerification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO 3 /metal devices
000808720 260__ $$aCambridge$$bRSC Publ.$$c2016
000808720 3367_ $$2DRIVER$$aarticle
000808720 3367_ $$2DataCite$$aOutput Types/Journal article
000808720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1469612613_20814
000808720 3367_ $$2BibTeX$$aARTICLE
000808720 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808720 3367_ $$00$$2EndNote$$aJournal Article
000808720 520__ $$aNanoscale redox reactions in transition metal oxides are believed to be the physical foundation of memristive devices, which present a highly scalable, low-power alternative for future non-volatile memory devices. The interface between noble metal top electrodes and Nb-doped SrTiO3 single crystals may serve as a prominent but not yet well-understood example of such memristive devices. In this report, we will present experimental evidence that nanoscale redox reactions and the associated valence change mechanism are indeed responsible for the resistance change in noble metal/Nb-doped SrTiO3 junctions with dimensions ranging from the micrometer scale down to the nanometer regime. Direct verification of the valence change mechanism is given by spectromicroscopic characterization of switching filaments. Furthermore, it is found that the resistance change over time is driven by the reoxidation of a previously oxygen-deficient region. The retention times of the low resistance states, accordingly, can be dramatically improved under vacuum conditions as well as through the insertion of a thin Al2O3 layer which prevents this reoxidation. These insights finally confirm the resistive switching mechanism at these interfaces and are therefore of significant importance for the study and application of memristive devices based on Nb-doped SrTiO3 as well as systems with similar switching mechanisms.
000808720 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000808720 588__ $$aDataset connected to CrossRef
000808720 7001_ $$0P:(DE-Juel1)157925$$aRaab, N.$$b1$$ufzj
000808720 7001_ $$0P:(DE-HGF)0$$aMenke, T.$$b2
000808720 7001_ $$0P:(DE-Juel1)159492$$aSchmitz, C.$$b3$$ufzj
000808720 7001_ $$0P:(DE-HGF)0$$aRosezin, R.$$b4
000808720 7001_ $$0P:(DE-Juel1)128874$$aMüller, P.$$b5
000808720 7001_ $$0P:(DE-Juel1)161427$$aAndrä, M.$$b6$$ufzj
000808720 7001_ $$0P:(DE-Juel1)145012$$aFeyer, V.$$b7$$ufzj
000808720 7001_ $$0P:(DE-Juel1)130570$$aBruchhaus, R.$$b8$$ufzj
000808720 7001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b9$$ufzj
000808720 7001_ $$0P:(DE-Juel1)130948$$aSchneider, C. M.$$b10$$ufzj
000808720 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b11$$ufzj
000808720 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b12$$ufzj
000808720 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C6NR00824K$$gp. 10.1039.C6NR00824K$$n29$$p13967-13975$$tNanoscale$$v8$$x2040-3372$$y2016
000808720 8564_ $$uhttps://juser.fz-juelich.de/record/808720/files/c6nr00824k.pdf$$yOpenAccess
000808720 8564_ $$uhttps://juser.fz-juelich.de/record/808720/files/c6nr00824k.gif?subformat=icon$$xicon$$yOpenAccess
000808720 8564_ $$uhttps://juser.fz-juelich.de/record/808720/files/c6nr00824k.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808720 8564_ $$uhttps://juser.fz-juelich.de/record/808720/files/c6nr00824k.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808720 8564_ $$uhttps://juser.fz-juelich.de/record/808720/files/c6nr00824k.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808720 8564_ $$uhttps://juser.fz-juelich.de/record/808720/files/c6nr00824k.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808720 909CO $$ooai:juser.fz-juelich.de:808720$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157925$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159492$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161427$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130570$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000808720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000808720 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000808720 9141_ $$y2016
000808720 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000808720 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808720 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2014
000808720 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2014
000808720 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808720 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808720 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808720 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808720 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808720 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808720 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808720 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808720 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000808720 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
000808720 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x2
000808720 980__ $$ajournal
000808720 980__ $$aVDB
000808720 980__ $$aUNRESTRICTED
000808720 980__ $$aI:(DE-Juel1)PGI-6-20110106
000808720 980__ $$aI:(DE-Juel1)PGI-7-20110106
000808720 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000808720 9801_ $$aFullTexts
000808720 981__ $$aI:(DE-Juel1)PGI-7-20110106