Home > Publications database > Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO 3 /metal devices > print |
001 | 808720 | ||
005 | 20240619091206.0 | ||
024 | 7 | _ | |a 10.1039/C6NR00824K |2 doi |
024 | 7 | _ | |a 2040-3364 |2 ISSN |
024 | 7 | _ | |a 2040-3372 |2 ISSN |
024 | 7 | _ | |a 2128/11968 |2 Handle |
024 | 7 | _ | |a WOS:000381815000016 |2 WOS |
037 | _ | _ | |a FZJ-2016-02347 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Baeumer, C. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO 3 /metal devices |
260 | _ | _ | |a Cambridge |c 2016 |b RSC Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1469612613_20814 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Nanoscale redox reactions in transition metal oxides are believed to be the physical foundation of memristive devices, which present a highly scalable, low-power alternative for future non-volatile memory devices. The interface between noble metal top electrodes and Nb-doped SrTiO3 single crystals may serve as a prominent but not yet well-understood example of such memristive devices. In this report, we will present experimental evidence that nanoscale redox reactions and the associated valence change mechanism are indeed responsible for the resistance change in noble metal/Nb-doped SrTiO3 junctions with dimensions ranging from the micrometer scale down to the nanometer regime. Direct verification of the valence change mechanism is given by spectromicroscopic characterization of switching filaments. Furthermore, it is found that the resistance change over time is driven by the reoxidation of a previously oxygen-deficient region. The retention times of the low resistance states, accordingly, can be dramatically improved under vacuum conditions as well as through the insertion of a thin Al2O3 layer which prevents this reoxidation. These insights finally confirm the resistive switching mechanism at these interfaces and are therefore of significant importance for the study and application of memristive devices based on Nb-doped SrTiO3 as well as systems with similar switching mechanisms. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Raab, N. |0 P:(DE-Juel1)157925 |b 1 |u fzj |
700 | 1 | _ | |a Menke, T. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schmitz, C. |0 P:(DE-Juel1)159492 |b 3 |u fzj |
700 | 1 | _ | |a Rosezin, R. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Müller, P. |0 P:(DE-Juel1)128874 |b 5 |
700 | 1 | _ | |a Andrä, M. |0 P:(DE-Juel1)161427 |b 6 |u fzj |
700 | 1 | _ | |a Feyer, V. |0 P:(DE-Juel1)145012 |b 7 |u fzj |
700 | 1 | _ | |a Bruchhaus, R. |0 P:(DE-Juel1)130570 |b 8 |u fzj |
700 | 1 | _ | |a Gunkel, F. |0 P:(DE-Juel1)130677 |b 9 |u fzj |
700 | 1 | _ | |a Schneider, C. M. |0 P:(DE-Juel1)130948 |b 10 |u fzj |
700 | 1 | _ | |a Waser, R. |0 P:(DE-Juel1)131022 |b 11 |u fzj |
700 | 1 | _ | |a Dittmann, R. |0 P:(DE-Juel1)130620 |b 12 |u fzj |
773 | _ | _ | |a 10.1039/C6NR00824K |g p. 10.1039.C6NR00824K |0 PERI:(DE-600)2515664-0 |n 29 |p 13967-13975 |t Nanoscale |v 8 |y 2016 |x 2040-3372 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/808720/files/c6nr00824k.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/808720/files/c6nr00824k.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/808720/files/c6nr00824k.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/808720/files/c6nr00824k.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/808720/files/c6nr00824k.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/808720/files/c6nr00824k.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:808720 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157925 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)159492 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)161427 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145012 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130570 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130677 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130948 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)131022 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOSCALE : 2014 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NANOSCALE : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k Neutronenstreuung ; JCNS-1 |l Neutronenstreuung |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|