001     808727
005     20210129222842.0
024 7 _ |a 10.1098/rsta.2015.0233
|2 doi
024 7 _ |a WOS:000376159700003
|2 WOS
024 7 _ |a altmetric:6143674
|2 altmetric
024 7 _ |a pmid:27091169
|2 pmid
037 _ _ |a FZJ-2016-02354
082 _ _ |a 530
100 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Quantum theory as plausible reasoning applied to data obtained by robust experiments
260 _ _ |a London
|c 2016
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1461583419_12067
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We review recent work that employs the framework of logical inference to establish a bridge between data gathered through experiments and their objective description in terms of human-made concepts. It is shown that logical inference applied to experiments for which the observed events are independent and for which the frequency distribution of these events is robust with respect to small changes of the conditions under which the experiments are carried out yields, without introducing any concept of quantum theory, the quantum theoretical description in terms of the Schrödinger or the Pauli equation, the Stern–Gerlach or Einstein–Podolsky–Rosen–Bohm experiments. The extraordinary descriptive power of quantum theory then follows from the fact that it is plausible reasoning, that is common sense, applied to reproducible and robust experimental data.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Katsnelson, M. I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 2
773 _ _ |a 10.1098/rsta.2015.0233
|0 PERI:(DE-600)1462626-3
|p Issue: 2068
|t Philosophical transactions of the Royal Society of London / A
|v 374
|y 2016
|x 0080-4614
909 C O |o oai:juser.fz-juelich.de:808727
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHILOS T R SOC A : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21