000808741 001__ 808741
000808741 005__ 20240711101544.0
000808741 0247_ $$2doi$$a10.1016/j.energy.2017.01.078
000808741 0247_ $$2ISSN$$a0360-5442
000808741 0247_ $$2ISSN$$a1873-6785
000808741 0247_ $$2WOS$$aWOS:000399267100057
000808741 037__ $$aFZJ-2016-02363
000808741 082__ $$a600
000808741 1001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b0$$eCorresponding author
000808741 245__ $$aParameter extraction of polymer electrolyte membrane fuel cell based on 3 quasi-dynamic model and periphery signals
000808741 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000808741 3367_ $$2DRIVER$$aarticle
000808741 3367_ $$2DataCite$$aOutput Types/Journal article
000808741 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491804389_30233
000808741 3367_ $$2BibTeX$$aARTICLE
000808741 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808741 3367_ $$00$$2EndNote$$aJournal Article
000808741 520__ $$aIt is important to extract parameters of a polymer electrolyte membrane fuel cell (PEMFC) using periphery signals. The main contribution of this work is to introduce a simple yet effective method for parameter-extraction basing on a quasi-dynamic model for a single PEMFC and periphery signals. The model includes filling-and-emptying sub-models, which set up relations between periphery signals and internal states, and a static water transferring sub-model for the membrane. The parameter-extraction method with 5 steps for 9 key parameters is proposed, drawing on experiments and algorithms of nonlinear least square (NLS) and neural networks (NN). Comparison of the identified parameters to data in literature shows that, the results in our study are reasonable.A dynamic experiment is carried out to verify the model. Relative errors within [-5, 5]% between simulating and experimental results are observed, showing the effectiveness of the results. Properties of internal states with respect to time and frequency are simulated. A net water transport coefficient β∈[0.13, 0.21] is predicted. The normalized transfer functions of small disturbance signals from the cell current to internal states are low-frequency-pass functions. A cutoff frequency (0.0003–0.37 Hz) and a resonating frequency (3.55 Hz), which retain under different operation conditions, is found.
000808741 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000808741 588__ $$aDataset connected to CrossRef
000808741 7001_ $$0P:(DE-HGF)0$$aFang, Chuan$$b1
000808741 7001_ $$0P:(DE-HGF)0$$aHu, Junming$$b2
000808741 7001_ $$0P:(DE-HGF)0$$aCheng, Siliang$$b3
000808741 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b4
000808741 7001_ $$0P:(DE-HGF)0$$aQuyang, Minggao$$b5
000808741 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000808741 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2017.01.078$$gVol. 122, p. 675 - 690$$p675 - 690$$tEnergy$$v122$$x0360-5442$$y2017
000808741 8564_ $$uhttps://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.pdf$$yRestricted
000808741 8564_ $$uhttps://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.gif?subformat=icon$$xicon$$yRestricted
000808741 8564_ $$uhttps://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808741 8564_ $$uhttps://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808741 8564_ $$uhttps://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808741 8564_ $$uhttps://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808741 909CO $$ooai:juser.fz-juelich.de:808741$$pVDB
000808741 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000808741 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808741 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2014
000808741 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808741 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808741 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808741 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808741 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808741 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000808741 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808741 9141_ $$y2017
000808741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000808741 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000808741 920__ $$lyes
000808741 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000808741 980__ $$ajournal
000808741 980__ $$aVDB
000808741 980__ $$aI:(DE-Juel1)IEK-3-20101013
000808741 980__ $$aUNRESTRICTED
000808741 981__ $$aI:(DE-Juel1)ICE-2-20101013