001     808741
005     20240711101544.0
024 7 _ |2 doi
|a 10.1016/j.energy.2017.01.078
024 7 _ |2 ISSN
|a 0360-5442
024 7 _ |2 ISSN
|a 1873-6785
024 7 _ |2 WOS
|a WOS:000399267100057
037 _ _ |a FZJ-2016-02363
082 _ _ |a 600
100 1 _ |0 P:(DE-Juel1)168338
|a Xu, Liangfei
|b 0
|e Corresponding author
245 _ _ |a Parameter extraction of polymer electrolyte membrane fuel cell based on 3 quasi-dynamic model and periphery signals
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1491804389_30233
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a It is important to extract parameters of a polymer electrolyte membrane fuel cell (PEMFC) using periphery signals. The main contribution of this work is to introduce a simple yet effective method for parameter-extraction basing on a quasi-dynamic model for a single PEMFC and periphery signals. The model includes filling-and-emptying sub-models, which set up relations between periphery signals and internal states, and a static water transferring sub-model for the membrane. The parameter-extraction method with 5 steps for 9 key parameters is proposed, drawing on experiments and algorithms of nonlinear least square (NLS) and neural networks (NN). Comparison of the identified parameters to data in literature shows that, the results in our study are reasonable.A dynamic experiment is carried out to verify the model. Relative errors within [-5, 5]% between simulating and experimental results are observed, showing the effectiveness of the results. Properties of internal states with respect to time and frequency are simulated. A net water transport coefficient β∈[0.13, 0.21] is predicted. The normalized transfer functions of small disturbance signals from the cell current to internal states are low-frequency-pass functions. A cutoff frequency (0.0003–0.37 Hz) and a resonating frequency (3.55 Hz), which retain under different operation conditions, is found.
536 _ _ |0 G:(DE-HGF)POF3-135
|a 135 - Fuel Cells (POF3-135)
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Fang, Chuan
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Hu, Junming
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Cheng, Siliang
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Li, Jianqiu
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Quyang, Minggao
|b 5
700 1 _ |0 P:(DE-Juel1)129883
|a Lehnert, Werner
|b 6
773 _ _ |0 PERI:(DE-600)2019804-8
|a 10.1016/j.energy.2017.01.078
|g Vol. 122, p. 675 - 690
|p 675 - 690
|t Energy
|v 122
|x 0360-5442
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808741/files/1-s2.0-S0360544217300786-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:808741
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168338
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129883
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-135
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ENERGY : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21