000808750 001__ 808750
000808750 005__ 20220930130059.0
000808750 0247_ $$2doi$$a10.1088/1367-2630/18/4/045002
000808750 0247_ $$2Handle$$a2128/10339
000808750 0247_ $$2WOS$$aWOS:000375472400001
000808750 0247_ $$2altmetric$$aaltmetric:5024467
000808750 037__ $$aFZJ-2016-02371
000808750 082__ $$a530
000808750 1001_ $$0P:(DE-HGF)0$$aRybakov, Filipp N$$b0$$eCorresponding author
000808750 245__ $$aNew spiral state and skyrmion lattice in 3D model of chiral magnets
000808750 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2016
000808750 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1461239982_23616
000808750 3367_ $$2DataCite$$aOutput Types/Journal article
000808750 3367_ $$00$$2EndNote$$aJournal Article
000808750 3367_ $$2BibTeX$$aARTICLE
000808750 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808750 3367_ $$2DRIVER$$aarticle
000808750 520__ $$aWe present the phase diagram of magnetic states for films of isotropic chiral magnets (ChMs) calculated as function of applied magnetic field and thickness of the film. We have found a novel magnetic state driven by the natural confinement of the crystal, localized at the surface and stacked on top of the conical bulk phase. This magnetic surface state has a three-dimensional (3D) chiral spin-texture described by the superposition of helical and cycloidal spin spirals. This surface state exists for a large range of applied magnetic fields and for any film thickness beyond a critical one. We also identified the whole thickness and field range for which the skyrmion lattice becomes the ground state of the system. Below a certain critical thickness the surface state and bulk conical phase are suppressed in favor of the skyrmion lattice. Unraveling of those phases and the construction of the phase diagram became possible using advanced computational techniques for direct energy minimization applied to a basic 3D model for ChMs. Presented results provide a comprehensive theoretical description for those effects already observed in experiments on thin films of ChMs, predict new effects important for applications and open perspectives for experimental studies of such systems.
000808750 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000808750 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000808750 588__ $$aDataset connected to CrossRef
000808750 7001_ $$0P:(DE-HGF)0$$aBorisov, Aleksandr B$$b1
000808750 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
000808750 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai$$b3$$eCorresponding author
000808750 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/18/4/045002$$gVol. 18, no. 4, p. 045002 -$$n4$$p045002$$tNew journal of physics$$v18$$x1367-2630$$y2016
000808750 8564_ $$uhttps://juser.fz-juelich.de/record/808750/files/njp_18_4_045002.pdf$$yOpenAccess
000808750 8564_ $$uhttps://juser.fz-juelich.de/record/808750/files/njp_18_4_045002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808750 8767_ $$88057302$$92016-04-12$$d2016-04-13$$eAPC$$jZahlung erfolgt$$paa1bf4
000808750 909CO $$ooai:juser.fz-juelich.de:808750$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000808750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808750 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000808750 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000808750 9141_ $$y2016
000808750 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000808750 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808750 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2014
000808750 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000808750 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808750 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808750 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808750 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808750 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808750 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808750 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808750 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000808750 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808750 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000808750 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000808750 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000808750 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000808750 9801_ $$aUNRESTRICTED
000808750 9801_ $$aFullTexts
000808750 980__ $$ajournal
000808750 980__ $$aVDB
000808750 980__ $$aUNRESTRICTED
000808750 980__ $$aI:(DE-Juel1)IAS-1-20090406
000808750 980__ $$aI:(DE-Juel1)PGI-1-20110106
000808750 980__ $$aI:(DE-82)080009_20140620
000808750 980__ $$aI:(DE-82)080012_20140620
000808750 980__ $$aAPC
000808750 981__ $$aI:(DE-Juel1)PGI-1-20110106