001     808750
005     20220930130059.0
024 7 _ |a 10.1088/1367-2630/18/4/045002
|2 doi
024 7 _ |a 2128/10339
|2 Handle
024 7 _ |a WOS:000375472400001
|2 WOS
024 7 _ |a altmetric:5024467
|2 altmetric
037 _ _ |a FZJ-2016-02371
082 _ _ |a 530
100 1 _ |a Rybakov, Filipp N
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a New spiral state and skyrmion lattice in 3D model of chiral magnets
260 _ _ |a [Bad Honnef]
|c 2016
|b Dt. Physikalische Ges.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1461239982_23616
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We present the phase diagram of magnetic states for films of isotropic chiral magnets (ChMs) calculated as function of applied magnetic field and thickness of the film. We have found a novel magnetic state driven by the natural confinement of the crystal, localized at the surface and stacked on top of the conical bulk phase. This magnetic surface state has a three-dimensional (3D) chiral spin-texture described by the superposition of helical and cycloidal spin spirals. This surface state exists for a large range of applied magnetic fields and for any film thickness beyond a critical one. We also identified the whole thickness and field range for which the skyrmion lattice becomes the ground state of the system. Below a certain critical thickness the surface state and bulk conical phase are suppressed in favor of the skyrmion lattice. Unraveling of those phases and the construction of the phase diagram became possible using advanced computational techniques for direct energy minimization applied to a basic 3D model for ChMs. Presented results provide a comprehensive theoretical description for those effects already observed in experiments on thin films of ChMs, predict new effects important for applications and open perspectives for experimental studies of such systems.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Borisov, Aleksandr B
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
700 1 _ |a Kiselev, Nikolai
|0 P:(DE-Juel1)145390
|b 3
|e Corresponding author
773 _ _ |a 10.1088/1367-2630/18/4/045002
|g Vol. 18, no. 4, p. 045002 -
|0 PERI:(DE-600)1464444-7
|n 4
|p 045002
|t New journal of physics
|v 18
|y 2016
|x 1367-2630
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/808750/files/njp_18_4_045002.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/808750/files/njp_18_4_045002.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:808750
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145390
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21