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Abstract: This article presents a new simulation ap-

proach for multi-destination pedestrian crowds in complex 
environments. The work covers two major topics. In the 
first part, a novel cellular automaton (CA) model is pro-
posed. The model describes the pedestrian movement by a 
set of simple rules and produces fundamental diagrams 
similar to those derived from laboratory experiments. The 
second topic of this work describes how the CA can be 
integrated into an iterative learning cycle where the indi-
vidual pedestrian can adapt travel plans based on experi-
ences from previous iterations. Depending on the setup, the 
overall travel behavior moves either towards a Nash equi-
librium or the system optimum. The functional interaction 
of the CA with the iterative learning approach is demon-
strated on a set of transport paradoxes. Furthermore, time 
series of speed and density observed in a small-scale exper-
iment show a general agreement between the CA simulation 
and laboratory experiments. The scalability of the proposed 
approach is demonstrated on a large-scale scenario. 

 
1 INTRODUCTION 

 
Research on pedestrian dynamics has grown significantly 

in the last years due to the increasing need to analyze the 
safety of public spaces and other pedestrian environments. 
The global process of urbanization introduced, in fact, new 
issues in different fields, including transportation, where a 
growing demand has to be considered at the road level as 
well as at the pedestrian environment level.  

Computer simulations can help identify critical situations 
which emerge from the complex dynamics of pedestrian 
crowds. Thus, computer simulations of pedestrian crowds 
can contribute to the safety of pedestrians on the one hand 

and help to optimize the performances of pedestrian envi-
ronments on the other. 

The present work discusses a novel cellular automaton 
(CA) approach for omnidirectional pedestrian flows in 
combination with methods for pedestrian wayfinding in 
complex environments. Following Hoogendoorn and Bovy 
(2004a)1, the pedestrian behavior is modeled at three differ-
ent levels: 

• Strategic level: the person formulates his/her plan 
and final objective;  

• Tactical level: the set of activities to complete the 
plan is computed and scheduled;  

• Operational level: each activity is physically exe-
cuted, e.g., the person walks from one point in the environ-
ment to another one. 

Within this scope there exists a large body of related 
works. 

 
1.1 Modeling of Operational Pedestrian Behavior 

A large part of the literature focuses on the operational 
level of pedestrian behavior, where the consistent—but not 
complete—knowledge about density and flow relation 
allows the validation of dynamics generated by the models.  
Macroscopic approaches model pedestrians by abstracting 
the concept of individuals and considering the crowd as a 
kinetic gas (Henderson, 1971) or a fluid (Helbing, 1998). 
Methods taken from continuum mechanics have been pro-
posed as early as 2002 (see, e.g., Hughes, 2002) and applied 
by numerous works. Xiong et al. (2011) proposed a high-
order scheme to numerically simulate the mathematical 
model of Jiang et al. (2009). The computational complexity 
of macroscopic models is determined rather by the area of 

                                                             
1 The same classification has also been provided for ve-

hicular traffic modeling by Michon (1985). 
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the environment than by the number of people. Thus, mac-
roscopic approaches are efficient for the simulation of large 
crowds in small spaces. However, the equations generating 
the dynamics are abstract, making a mapping to an inherent 
pedestrian behavior difficult.  

In contrast, microscopic approaches are built from the 
individual’s point of view. The complex dynamics of mi-
croscopic models stem from the interaction between indi-
viduals and the interaction of individuals with the environ-
ment.  

Some microscopic models treat space as a continuous en-
tity. A well-known approach is the force-based model by 
Helbing and Molnár (1995), where attractive or repulsive 
forces generate the pedestrian movement. Since then, many 
alternative formulations have been proposed. Chraibi et al. 
(2010) provide a model that uses ellipses to present the 
velocity-dependent space occupation of pedestrians. Von 
Sivers and Köster (2014) introduce stride length adaptation 
to improve the simulated dynamics. Sun and Wu (2014) 
provide a library of various behaviors with different func-
tions for the operational level of pedestrians. 

In alternative to the continuous space approach, CA 
based models discretize space into a grid-like structure, 
gaining efficiency in computational times. Historically, 
CAs have first been applied to vehicular traffic. Nagel and 
Schreckenberg (1992) introduce a CA model for single lane 
vehicular traffic, which yields plausible flow dynamics. 
Rickert et al. (1996) extend this work into a two-lane model 
that introduces rules for overtaking. Nagel et al. (1998) give 
a more general approach to simulate two-lane streets, eval-
uating different rules for managing the overtaking. Simon 
and Gutowitz (1998) extend this model to bidirectional 
flows. Moussa (2008) proposes an advancement that pre-
vents passing vehicles from colliding with oncoming traffic. 
The application of CAs in the field of pedestrian dynamics 
started with the work of Blue and Adler (1998). In their 
model, pedestrians are walking on a multi-lane ring road. 
Pedestrians differ by their desired speed and are capable of 
performing lane changes. Fukui and Ishibashi (1999) pro-
pose a CA model for bidirectional flows, where conflicts 
with oncoming pedestrians are solved by sidestepping. At 
low densities the model displays lane formation behavior, 
but when densities exceed a certain threshold, a rapid state 
transition from free flow to total jam is observed. Similar 
state transitions occur in the CA model proposed by Baek et 
al. (2009). Other works (Muramatsu et al., 1999; Mu-
ramatsu and Nagatani, 2000) identify a stable critical densi-
ty for large systems. Enabling pedestrians to swap positions 
under dense conditions can avoid the implausibly rapid 
state transition from free flow to total jam. Blue and Adler 
(2000a) present a corresponding model for bidirectional 
flows with ad hoc rules. The rules take different desired 
speeds of pedestrians into account, allowing lane changes 
and also position swapping in dense conditions, to avoid the 
freezing of the pedestrian flow. Blue and Adler (2000b) 

present a four-directional extension, where the swapping 
procedure is modeled by a simple probabilistic approach. 
Whenever two pedestrians are in a head-on conflict, they 
swap position with a certain probability. Flötteröd and 
Lämmel (2015) introduced the concept of a conflict delay 
that pedestrians experience when they swap positions. The 
density-dependent conflict parameter is fitted against em-
pirical data. Lämmel and Flötteröd (2015) discuss an event-
based CA that implements the concept of conflict delay for 
one-dimensional movement in an isolated channel. 

A bio-inspired mechanism is the well-known floor field 
model by Burstedde et al. (2001). A static floor field in-
creases the probability of movement towards a certain des-
tination, while a dynamic one reproduces the chemotaxis 
phenomenon, leading to lane formation in simulations of 
bidirectional flows. Kirchner et al. (2003) extend that model 
by introducing friction. Kirchner et al. (2004) discuss meth-
ods to deal with different speeds, in addition to the usage of 
a finer grid discretization. An alternative approach to repre-
sent different speeds in a discrete space is given by Bandini 
et al. (2015). 

 
1.2 Route Finding and Equilibrium Search at a Strategic 
and Tactical Level 

In real life situations—for example in large train sta-
tions—individual pedestrians have distinctive origins and 
destinations. At the strategic level pedestrians plan their 
ultimate destinations. At the tactical level they plan and 
schedule activities or intermediate targets that lead to the 
desired destination. The schedule of intermediate targets 
describes a route from the origin to the destination. Early 
works in transportation research consider the so-called 
shortest path solution (SP) as an adequate route assignment 
(see, e.g., Whiting and Hillier (1960)).  

A drawback of SP is that it does not consider congestion. 
Consequently, resulting travel times can be longer than 
expected. This is in particular a problem for evacuations, 
where the available safe egress time is limited (see, e.g., 
Lämmel et al. (2010)). When traveling, people usually try 
to minimize travel time, thus, the SP seems to assign unre-
alistic routes also in behavioral terms.  

An assignment of routes where individual travel times 
are minimal under the given circumstances is called dynam-
ic user equilibrium or Nash equilibrium (NE). It describes a 
state in a competitive game where no player can gain by 
unilaterally switching his/her current strategy (Nash, 1951). 
It corresponds to Wardrop’s first principle for road traffic, 
which states that at equilibrium, the journey times of all 
routes that are actually used are equal or less than those that 
would be experienced on any unused route (Wardrop, 
1952). An NE can be achieved by iteratively assigning 
travelers new routes which are best responses to the situa-
tion in the current iteration. If at any time the best responses 
do not lead to new route assignments, the system has con-
verged to an NE. A detailed discussion on the application of 
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iterative best-response strategies to transport route assign-
ment problems is given in Cascetta (1989). Gawron (1998) 
proposes a simulation-based iterative algorithm where the 
travelers try to minimize their experienced individual travel 
times. The performance of the proposed algorithm is 
demonstrated on the so-called Braess’s paradox (Braess, 
1968). Nagel et al. (2000) present an application in a large-
scale context. Raney and Nagel (2004) discuss a method 
that aggregates the experienced travel times over predeter-
mined time slices for faster computation. Since an aggrega-
tion of experienced travel times may introduce a bias by 
systematically over- or underestimating the actual travel 
time, Raney and Nagel (2004) introduce an agent database 
that keeps a certain number of routes in the individual 
agent’s memory for later execution. At each iteration, 
agents may either create new best-response routes or select 
from their memory. Good results in terms of fast relaxation 
have been achieved by using a Metropolis sampling like 
(Metropolis et al., 1953) selection mechanism.  

Hoogendoorn and Bovy (2004a) propose a macroscopic 
continuous time and space dynamic iterative assignment 
model based on a generalized cost function. The general-
ized cost function aggregates over a range of different cost 
contributors such as travel time or penalties for late arrivals. 
While the original model deals with inelastic demand (all 
travelers starting at once), the authors argue that a generali-
zation to a framework based on activity-chains would be 
straightforward (Hoogendoorn and Bovy, 2004b). An activ-
ity chain is a decomposition of a traveler’s routines. A simi-
lar approach for the optimization of all-day, activity chain-
based plans is discussed in Charypar and Nagel (2005). 

An application of the theory on NE to the exit door selec-
tion problem in evacuations is discussed in Ehtamo et al. 
(2010). Lämmel et al. (2009) discuss the application of NE 
in the context of large-scale pedestrian evacuation prob-
lems. On a similar but smaller scale, Kretz et al. (2014) 
discuss NE assignments for pedestrians under normal con-
ditions. A static NE assignment method is discussed in 
Bauer and Gantner (2014). 

As an NE minimizes individual travel times, it does not 
necessarily minimize the system travel time (i.e. the sum of 
all travel times). A state where the system travel time is 
minimal is called system optimum (SO). Interestingly, the 
SO corresponds to an NE with respect to the marginal so-
cial costs instead of travel times (Beckmann et al., 1956). 
For an individual traveler, the marginal social costs com-
prise his/her experienced travel time and the amount of time 
that he/she delays other travelers. Peeta and Mahmassani 
(1995) propose an iterative algorithm in the dynamic traffic 
assignment domain. Lämmel and Flötteröd (2009) discuss a 
multi-agent-based approach with deterministic travel times 
that relies on a simple approximation to estimate the mar-
ginal social costs. A comparison with a numerical solution 
for a large-scale pedestrian evacuation scenario shows that 
the proposed approximation gives reasonable results 

(Dressler et al., 2011). Similarly, the work of Hamacher et 
al. (2011) uses numerical solutions in order to determine 
lower evacuation time bounds. 

A metaheuristic approach to find optimal distributions of 
routes—in terms of shortest evacuation times by also con-
sidering road conditions—is the one by Forcael et al. 
(2014). The model employs an ant colony optimization 
algorithm to find optimal evacuation routes in a city area by 
assuming evacuation on foot. 

Kemloh Wagoum et al. (2012) propose dynamic route 
planning procedures where initial routes are adapted as the 
local situation changes. Other works on pedestrian route 
finding include (Asano et al., 2010; Guo and Huang, 2011). 

 
1.3 Empirical data of omnidirectional pedestrian flows  

AlGadhi et al. (2002) identify a considerable bidirection-
al flow even for high densities of up to 7 pers/m! during a 
pilgrimage. Helbing et al. (2005); Kretz et al. (2006) pre-
sent laboratory experiments on bidirectional flows of vari-
ous flow compositions. They find that for high densities, 
the sum of directional flows in the bidirectional case is 
higher than in the unidirectional case. 

Zhang et al. (2012) derive uni- and bidirectional funda-
mental diagrams (FD) from laboratory experiments. The 
unidirectional FD display the typical triangular shape with a 
single peak flow at medium densities, while the bidirection-
al FD ends in a plateau with a considerably higher flow 
compared to the unidirectional one. Liu et al. (2014) present 
similar findings. 

Plaue et al. (2011, 2012) investigate pedestrian streams in 
a 90- and a 180-degree crossing experiment. The observed 
flow-density relation for both experiments fits well with the 
bidirectional FD of Zhang et al. (2012) (Zhang and Sey-
fried, 2014). 

 
1.4 Synthesis 

Approaches to model the operational level of pedestrian 
movement can be categorized into three classes. (i) Macro-
scopic approaches that consider the crowd as a kinetic gas 
or fluid. Those approaches are computationally efficient for 
large crowds in small spaces. However, the negligence of 
the individual makes it impossible to track persons and 
difficult at least to model complex multi-destination pedes-
trian crowds. (ii) Force-based models simulate pedestrians 
as individuals. However, the computational cost of those 
models makes them unpractical for large scenarios. (iii) 
CAs are both microscopic and computationally efficient. 
CAs are capable of reproducing aggregated features like 
lane formation in bidirectional flows. Still, at high densities, 
existing models display unrealistic jamming (e.g. Baek et 
al, 2009) or deal only with one-dimensional streams (Läm-
mel and Flötteröd, 2015). 

In contrast to the operational level, research on the tacti-
cal and strategic level is limited. Existing models are either 
macroscopic (Hoogendoorn and Bovy, 2004a), geared to-
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wards smaller problems such as distributing pedestrian flow 
equally around obstacles (Kretz et al., 2014), or the assign-
ments are static (Bauer and Gantner, 2014), neglecting the 
dynamic nature of crowd dynamics.  

Empirical studies show that bidirectional pedestrian 
flows are considerably different from unidirectional flows 
(e.g. Zhang et al., 2012; Liu et al., 2014). Moreover, there is 
at least one study that indicates there are no significant 
differences between crossing and bidirectional flows 
(Zhang and Seyfried, 2014). 

This work proposes a novel CA model that solves open 
problems on the operational as well as the tactical level. On 
the operational level, this contribution generalizes the ap-
proach for one-dimensional streams of Lämmel and Flöt-
teröd (2015) to a fully omni-directional model that repro-
duces uni- and bidirectional pedestrian flows adequately. 
On the strategic level, the current contribution proposes a 
method that maps the two-dimensional pedestrian environ-
ment on a network. Thus, well-known route assignment 
approaches can be applied to the model. This includes a 
simple formulation to estimate the social marginal cost for 
system optimal route finding. The performance of the mod-
el is demonstrated based on well-known transportation 
paradoxes as well as on the ability to adequately reproduce 
laboratory experiments of crossing and bidirectional flows. 
The scalability of the proposed approach is shown on a 
large-scale scenario 

The remainder of this work is organized as follows. Sec-
tion 2 introduces the novel CA model. Section 3 discusses 
the application of route finding methods to the CA model. 
Experimental results are presented in Section 4 and finally, 
Section 5 concludes the article with a brief discussion and 
an outlook on future directions. 

 
2 A MODEL FOR FAST PEDESTRIAN SIMULA-

TIONS 
 
This section discusses the novel two-dimensional CA 

model. The CA is controlled by a set of simple rules, with a 
parallel update mechanism leading to an efficient computer 
simulation model. Albeit being simple, the model allows for 
the simulation of multi-destination pedestrian crowds. The 
validity is demonstrated on an almost perfect reproduction 

of empirical uni- and bidirectional pedestrian fundamental 
diagrams. Section 2.1 discusses the representation of the 
simulation environment. A simple and efficient approach 
for local density estimation is introduced in Section 2.2. 
The rules that control the movement are given in Section 
2.3. Section 2.4 demonstrates how well the CA reproduces 
flow dynamics observed in laboratory experiments.  

 
2.1 Environment Representation and Floor Fields 

The CA environment is modeled by a grid of square 
cells, whose 0.4×0.4 m! size describes the average space 
occupation of a person (Weidmann (1993)) and reproduces 
a maximum pedestrian density of 6.25 pers/m!. This co-
vers the values usually observed in real life. Cell types can 
be either walkable or obstacle. A cell of type obstacle im-
plies that no pedestrian will ever occupy it. The granularity 
of the grid can be too coarse to represent minor obstacles 
like small columns or lampposts. Those aspects are less 
important for the current work, which focuses on more 
macroscopic scenarios, neglecting this level of detail for 
now2.  

The movement of the pedestrians is influenced by their 
individual destinations. Path creation is handled on the 
tactical level, which is discussed in Section 4. It includes, 
for example, the avoidance of congested corridors if better, 
possibly longer, alternatives exist. On the operational level, 
paths are decomposed into intermediate targets that are 
processed one after another. 

Intermediate targets mark the extremes of a particular re-
gion of the environment (e.g. a room or a corridor), similar-
ly to Crociani et al. (2014), while final goals are the open 
edges of the environment, i.e., the entrances/exits of the CA 
space (an example is illustrated in Figure 1). The concept of 
region is fuzzy and the de-composition of the environment 
is a subjective task, which is left to the user.  

Pedestrians are directed towards each target—either 
intermediate or final—by specific gradients spread on 
overlaid grids, called static floor fields. This well-known 

                                                             
2 The problem of small objects could be managed by us-

ing adaptive grid sizes and micro-stepping. 

Figure 1 Example of a scenario with different paths lead-
ing to the same exit. 

Figure 2 Two methods for the calculation of the floor 
field. The Manhattan metric generates an evident artifact 
in the space utilization, while the diffusion with the  √! 
variation significantly improves the result. 
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approach has been introduced in Burstedde et al. (2001). A 
relevant aspect is the way in which gradients are diffused 
from the targets. Different spreading methods can lead to 
different space utilizations of the simulated pedestrians. The 
work of Kretz et al. (2010) gives an overview about the 
most common methods. Figure 2 illustrates the Manhattan 
metric and the Chessboard metric with the 2 variant over 
corners. This work applies the Chessboard metric.   

An important aspect of the floor field diffusion algorithm 
is the stopping criterion. If no stopping criterion is defined, 
the floor field is spread to all cells of the environment. In 
this work, the diffusion stops at obstacles and (intermedi-
ate) targets. The main reason for stopping at (intermediate) 
targets is to allow a complete representation of all possible 
paths, as shown in Figure 1. In general, it allows to map the 
environment onto a network where nodes represent targets 
and links describe a direct connection between two targets 
(i.e. there are no other intermediate targets to cross in be-
tween). This makes path computation simple and reduces 
the computational costs, because floor fields are only com-
puted where needed. Moreover, it allows parallelizing the 
floor field computation in a simple way. The resulting net-
work is used on the tactical level for route computation. 
Details are discussed in Section 3. 

 
2.2 The Local Density Estimation 

The proposed CA model reproduces empirically derived 
fundamental diagrams as well as disaggregated dynamic 
situations. A simple set of rules controls the CA model. 
Those rules depend on the local density. A feasible density 
estimation approach is therefore needed. Several methods 
have been defined in the literature (cf., Steffen and Seyfried 
(2010)). A versatile method is the so-called Voronoi meth-
od. It provides stable and continuous values for the local 
densities, without the need of any calibration parameter. 
However, its computational complexity is considerable and 
in the case of discrete models its improvements in precision 
are limited. The computational cost of this model has been 
kept low by introducing a more simple and efficient meth-
od, which performs a discrete calculation of the local densi-
ty to achieve the number density of pedestrians. This quan-
tity describes the overall density of people in the surround-
ing of each cell within a constant distance.  

This estimation is calculated with an additional grid that 
works as a dynamic floor field and changes its values over 
time. The idea is to spread the presence of each pedestrian 
to the surrounding space, i.e., to cells belonging to a fixed 
distance !. This parameter defines the local aspect of the 
density calculation and is the only parameter of this meth-
od. The local density ! of cell ! is defined as 

 ! =  !
!(!),    (1) 

with ! representing the number of persons within the dis-
tance ! from the center of the cell ! and !(!) is the area of 
the set of cells that (i) belong to the same neighborhood and 
(ii) do not contain obstacles. The latter enforces that obsta-
cles are not part of the local area.  

The update phase of the density grid is illustrated in Fig-
ure 3: at the beginning of each simulation step, the presence 
of pedestrians is spread to the surrounding cells which are 
not containing obstacles within radius !. In this way, each 
cell of the grid contains the ! value. The area !(!) must be 
calculated for every cell of the environment at the begin-
ning of the simulation, but in any case the total cost of the 
computation grows linearly with the number of pedestrians 
(see Section 4.4 for an analysis of the computation times). 

The discussed method leads the density estimation to be 
isotropic. However, it is well known that pedestrians per-
ceive their surroundings in an anisotropic way (see, e.g., 
Gulikers et al. (2013)). In the proposed CA model the ani-
sotropy is thus implemented by the update rules as dis-
cussed in the following section. 

 
2.3 Rules of the Dynamics: Definition and Implementa-
tion for Two-dimensional Environments 

The proposed CA model offers a computationally effi-
cient calculation of the pedestrian dynamics in two-
dimensional environments. Table 1 gives a parameter over-
view. It extends the ideas of Flötteröd and Lämmel (2015), 
who discuss a theoretical model on one-dimensional pedes-
trian flows. In the theoretical model, the movement is con-
trolled by three rules. 

Figure 3. The density grid working principle: at the be-
ginning of the time-step, pedestrians signal their presence 
by adding 1 in the nearby cells (here the radius is 2 cells). 

Figure 4 The jam (a) and counter-flow (b) rules. In (a), 
the cell that became empty remains blocked. In (b) two 
counter-flow pedestrians (the light pedestrian follows the 
dark color and vice-versa) swap their positions.  
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• Movement rule: a pedestrian cannot change 
his/her position before !! seconds,  

• Jam rule: if a cell is occupied at time ! by pedes-
trian !, every pedestrian ! ≠ ! cannot occupy that cell 
before time ! + !!,  

• Counter-flow rule: if two pedestrians in two 
neighboring cells at time ! are in a head-on conflict, then 
they will swap their position ("squeeze past" each other) at 
time ! + !! + !!.  

The movement rule defines the free-flow cell travel time, 
as well as the time-step duration of the CA. In this way the 
equal maximum speed for all pedestrians is given by the 
ratio !"##_!"#$/!!. In the present work, !! is assumed to 
be 0.3s in order to have a pedestrian speed of about 1.3 m/s. 
Other approaches allow for individual maximal speeds. 
Kirchner et al. (2004) propose a model with a discrete 
number of individual speeds. Bandini et al. (2015) discuss a 
model where the movement is controlled by probabilities 
and thus can reproduce a continuum of expected maximal 
speeds. These approaches allow to overcome artifacts re-
sulting from the space discretization, as well as from the 
diagonal movements that here imply an increase of the 
pedestrian speed by 2. This contribution focuses on the 
reproduction of fundamental properties, in particular for 
higher densities. Therefore individual maximal speeds are 
out of scope, but will be part of future directions.  

Flötteröd and Lämmel (2015) discuss the following con-
tinuity constraint, without which the model would behave 
discontinuously when going from arbitrary small but strict-
ly positive counter-flow to a unidirectional flow. 

  !!  =  !! + !!   (2) 
Furthermore, they make the jam and counter-flow pa-

rameters density dependent and use a least squares estima-
tor to fit the model against empirical data. The density de-
pendence is defined by the following equation: 

 !! = ! !"##_!"#$⋅!
!!!

!
,   (3) 

where !"##_!"#$ is the width of the pedestrian, ! is the local 

density for the pedestrian under consideration, and (!, !) 
are parameters.  

This contribution extends the work of Flötteröd and 
Lämmel (2015) and the related computer implementation of 
Lämmel and Flötteröd (2015) to two-dimensional environ-
ments. In a one-dimensional environment, the movement is 
constrained to streams of pedestrians, while in a two-
dimensional environment pedestrians can move freely in 
multiple directions. There are various options for modeling 
the direction choices. 

In this work, pedestrians choose their movement direc-
tions by a simple probability function, similar to the one 
provided by Burstedde et al. (2001). The movement capa-
bilities of pedestrians are restricted to the Moore neighbor-
hood, allowing them to also perform diagonal movements. 
The probability for a pedestrian at location !" to move to 
the cell with coordinates !" is: 

 !!" = !!!"!!! !!"!!!" 1 − Ω!" , (4) 
where ! is a normalization factor; !!" describes the impene-
trability of obstacles (i.e. 0 if there is an obstacle in !", oth-
erwise 1); !!" and !!" are the values of the static floor field 
respectively for the position of the pedestrian and the eval-
uated position3; Ω!" forbids movement to cells already oc-
cupied by other pedestrians by returning 1 if !" is not free or 
0 otherwise; κ! is a calibration parameter.  

The update strategy is parallel, which means that not all 
movement intentions lead to a position change at the end of 
the step. Conflicts arising from choices of identical destina-
tions are dealt with by randomly choosing a winner, leaving 
the other involved pedestrians to yield and choose a new 
move at the next simulation time-step. 

The adaptation and implementation of the jam and coun-
ter-flow rules are graphically explained in Figure 4.  

The first mechanism implements the jam rule by extend-
ing the presence of pedestrians for  !! time to their previ-
ously occupied cells. The procedure works as follows: each 
pedestrian who moves at time ! leaves a tag !! on his/her 
previous position. This tag will act as an obstacle for every 
person until time ! + !!. In this way, every person will 
cause a delay only to the persons behind. Thus the leaders 
of a line will not be affected by the eventual congestion 
behind them and, albeit density perception is isotropic, the 
overall behavior is anisotropic, as observed in real life. 
Since time is discrete, a naïve implementation of this mech-
anism would require !! to be a multiple of the time-step 
duration !!. Nonetheless, a usage of !! ∈  ℝ is allowed and 
has been implemented by introducing a stochastic manage-
ment of this variable. The tag !! stays in the cell for at least 
!!/!!  simulation time-steps, while the decimal part of the 

                                                             
3 This represents a difference to the original model of 

Burstedde et al. (2001), in order to let the value of the ex-
ponent to be normalized in a defined range. 

Table 1 
Parameter overview of the CA model 

Parameter Value  
density spreading parameter ! 2 

time-step duration !! 0.3s 
conflict delay coefficient ! 0.39s 
conflict delay exponent ! 1.43 

normalization factor ! 1 
sensitivity parameter !! 6 

cell side length !"##_!"#$ 0.4m 
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fraction defines the probability that the trace stays for one 
additional time-step longer. This aspect is important since 
the !! varies with the local density !, according to the con-
tinuity constraint (2) and the density dependent conflict 
delay (3).  

The counter-flow rule implies that two pedestrians who 
choose to swap their position, due to opposite movement 
directions, will do so after !! + !! seconds. The question 
of having !! ∈  ℝ is again valid as discussed above, and an 
analogous method is used.  

A deeper clarification of the definition and recognition of 
counter-flow during the simulation is necessary, when the 
position swapping becomes available for the two pedestri-
ans, and how it is performed (see Figure 4(b) for illustra-
tion). The swapping, in fact, is a coordinated action, which 
needs to be synchronized. To allow this, the algorithm 
graphically explained in Figure 5 has been introduced, 
designing the following hand-shaking protocol: (i) pedestri-
an ! chooses to move to the cell where pedestrian !! re-
sides; (ii) pedestrian !! chooses to move to the cell of pe-
destrian !; (iii) pedestrian ! and !! swap positions and start 
waiting !! + !! seconds before they choose the next move.  

This sequence of events describes only the successful op-
tion: if one of the two pedestrians does not choose to swap, 
the other one will stay where he/she is and choose a new 
move in the next simulation time-step. In any case, the 
hand-shaking protocol starts with the assumption that at 
least one of the two pedestrians chooses to move to the 
position of the other. The probability function (4) would not 
allow this kind of selection due to Ω!". To solve this 
sue, Ω!" needs to return 0 not only for empty cells, but also 
for those that are occupied by counter-flow pedestrians. 

Counter-flow pedestrians can be identified by comparing 
values of the individual perceived floor fields. Assuming 
pedestrian ! and !! are at locations !" and !" respectively, 
with each cell belonging to the Moore neighborhood of the 
other, pedestrian ! will identify !! as a counter-flow pedes-
trian, and vice versa, if and only if both values !!" − !!", by 
considering the static floor field felt by !!, and !!" − !!", by 
considering the static floor field of !, are positive, i.e., they 
effectively belong to two opposite flows.  

 
2.4 Validation of the Operational Level 

To validate the CA on the operational level, a unidirec-
tional and a bidirectional experiment have been performed. 
The settings mimic those of the laboratory experiments of 
Zhang et al. (2011) and Zhang et al. (2012). Thus, a 
straightforward comparison of the simulation results with 
the empirical observations is possible. The comparison is 
limited to the unidirectional and bidirectional FD. In the 
experiments, the pedestrians walk through a channel. For 
the unidirectional case, the inflow into the channel is con-
trolled by an entrance bottleneck, while the outflow is lim-
ited by an exit bottleneck of variable width. For the bidirec-
tional case, entrance bottlenecks just in front of the channel 
control the inflows. The outflow is unbounded, which 
means pedestrians can leave the channel unhindered either 
to the right or to the left, circumventing the entrance bottle-
necks. In the bidirectional case, the flows are balanced (i.e. 
inflow and consequently directional densities are similar). 
To cover the whole range of densities, a number of simula-
tions with variable population sizes have been set up.  

 To determine the flow generated by the CA, the travel 
time from the beginning to the end of the corridor has been 
recorded for every pedestrian, converting it to the specific 

Figure 5 Activity diagram illustrating the swapping rule of the CA. Pedestrians check the direction of the others in front 
by the floor field (FF) and are allowed to choose movements to positions occupied by counterflow pedestrians. At the end 
of the step, the Pedestrian Synchronizer swaps only those pedestrians whose movement choices match. 
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flow according to !(!)  =  ! ∙ !, where 
! = corridor_length/travel_time describes the average 
speed of the simulated pedestrians and ! the average densi-
ty inside the channel. For every setting, the simulation has 
been run long enough with a sufficient number of pedestri-
ans to reach stationarity (i.e. until flow and density remain 
constant). For both uni- and bidirectional case, the simula-
tion-based FD is created from measurements that are col-
lected during stationary states.  

A comparison of simulation-based FDs with those of the 
laboratory experiments is given in Figure 6(a) and 6(b). 
Simulation-based results show an almost perfect agreement 
with the available empirical data. Nevertheless, the simula-
tion extrapolates to densities for which no empirical data 
exits.  

The plot for the bidirectional case in Figure 6(a) demon-
strates that the model is able to sustain stable flows over the 
whole density range and thus overcome the implausibly 
rapid state transition from free flow to total jam as ob-
served, e.g., in Fukui and Ishibashi (1999) and by Baek et 
al. (2009). Another observation is that for high densities 
beyond capacity, the bidirectional flow exceeds the unidi-
rectional flow. This is in line with findings that have been 
widely reported in empirical studies (see, AlGadhi et al., 

2002; Helbing et al., 2005; Kretz et al., 2006; Zhang et al., 
2012; Liu et al., 2014).  

 
3 ROUTE ASSIGNMENT SEARCH STRATEGY 

 
This section discusses the route assignment on the strate-

gic and tactical level. Raney and Nagel (2004) propose an 
iterative approach, where vehicular route assignments move 
towards a Nash equilibrium (NE). Oncoming vehicles move 
in opposite lanes and thus do not interact. In contrast, this 
contribution deals with a CA simulation for omnidirectional 
pedestrian flows. Besides the question of general applicabil-
ity, this also raises some computational issues.  

The general approach is depicted in Figure 7. At startup, 
the simulation framework creates initial plans. In the under-
lying work, plans are limited to routes with specific depar-
ture times4. The initial plans are executed in the CA simula-
tion and subsequently evaluated. After the plans evaluation 
it must be decided whether to continue or to terminate. If 
the simulation framework runs on, the pedestrians will 
revise their travel plans before the cycle starts again. Sub-
sequently, Section 3.1 discusses plans creation, Section 3.2 
plans selection, and Section 3.3 the termination criterion.  

                                                             
4 In general, plans can cover complex activity chains, e.g. 

of travel related daily routines. This is, however, beyond the 
scope of this contribution. 

Figure 7 Illustration of the route assignment search 
strategy. 

 Figure 6 FDs for unidirectional (a) and bidirectional (b) 
flows. Black dots are measurements from the simulations, 
while gray circles are the empirical data from Zhang et al. 
(2011, 2012). Average flow per simulated density is indi-
cated by the solid curve. 
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3.1 Plans creation  
As discussed in Section 2.1, the simulation environment 

is mapped onto a set of nodes (targets) that are connected 
by unidirectional links. Routes (i.e. lists of targets) for the 
initial plans are computed by the !∗ shortest path algorithm. 
Link weights correspond to free speed travel times. The free 
speed travel time !!!"## for link ! of length !! is defined as: 

 !!!"##  =  !!!!
!"##_!"#$    (5) 

The actual length of a link is not obvious, since a link rep-
resents a rather abstract relation from one target (origin) to 
the next target (destination). A reasonable behavioral as-
sumption is that, in the absence of others, real people 
choose the shortest connection between two targets. The 
length of the shortest connection from an origin to a desti-
nation has implicitly already been computed by the floor 
field generation (see Section 2.1). The value of the floor 
field for a given cell corresponds to the shortest distance 
between this cell and the origin from where the floor field 
has been spread. In this way, link lengths are determined at 
the startup of the simulation.  

When pedestrians travel from one target to the next, they 
experience individual travel costs. Travel costs are averaged 
over time slices ! and stored in hash tables for later use as 
discussed in (Lämmel et al., 2010). An obvious travel cost 
component is travel time. 

Pedestrians who are selected to create a new plan com-
pute new routes based on the averaged time-dependent 
travel costs from the previous CA simulation run.  

Let !!(!) denote the averaged time-dependent link travel 
time of link ! and time slice !. If time is the only travel 
cost component, then the overall route assignment moves 
towards an NE.  

Another component is the time-dependent delay that in-
dividual pedestrians impose on others because of their route 
choice. Following the nomenclature used in economics, the 
time-dependent delays imposed on others are external costs, 
while the time-dependent travel times are internal costs. Let  
!! !  denote the time-dependent external costs that a pe-
destrian imposes on others if he/she enters link ! during 
time slice !. The sum of internal and external costs yields 
the marginal social costs: 

 !!(!) = !!(!) + !!(!).    (6) 
If new routes are computed based on the marginal social 
costs, the overall route assignment moves towards the sys-
tem optimum (SO). Unlike internal costs (travel times), 
external costs are not directly observable, but they can be 
derived from the observed flow dynamics of the CA simu-
lation.  Lämmel and Flötteröd (2009) give a continuous 
formulation of the external costs for a queue simulation 
model. They derive the following approximation from the 
continuous formulation: 

 !(!!)  = !! − (!! + !!"##) ,   (7) 
where !(!!) are the individual external costs for a traveler 
who entered a congested link at time !! and !! is the time 

when the congestion dissolves. In the following, a simpler 
implementation in the CA simulation context is discussed.  

External costs occur only on delayed links. These are 
links where obstruction occurs. The current implementation 
estimates the external costs for all links isolated and thus 
neglects spillback. Furthermore, it is assumed that the flow 
on the isolated links is stationary for the whole period of 
delays. Assume the pedestrian under consideration enters 
link ! at time ! and leaves it again at time !!. The pedestri-
an traversed link ! during a period of delays if and only if 
!! − ! >  !!!"##.  In this case, the pedestrian imposed exter-
nal costs on the system.  Under the stationarity assumption, 
the outflow !! of link ! stays constant for the whole period. 
Thus, the amount of delay the pedestrian imposes on each 
subsequently following pedestrian is 1/!!. The number of 
delayed pedestrians is equal to !! ⋅ !! − !! . This yields 
for its individual external costs 

! ! = !! ⋅ !! − !! ⋅ !!!   =  !! − !!.  (8) 
The individual external costs are in the same way aggregat-

ed and stored in hash tables as the travel times. 
NE routing and SO routing are applied under the assump-

tion that travel costs remain the same from one CA simula-
tion run to the next. However, running the CA simulation 
with changed route assignments might also change the 
travel costs. A best practice to deal with this issue is to 
select only a fraction of 10% of all pedestrians for new 
plans creation. Those pedestrians who do not create new 
plans select a previously executed one from their memory.  

 
Section 3.2 Plans selection 

The plans selection procedure is similar to the Metropolis 
sampling approach (Metropolis et al., 1953). In order to 
apply this approach, plans need to be scored. The score of a 
plan is the negative value of its experienced travel costs 
(travel times for NE and marginal social costs for SO). !! is 
the score of the currently executed plan and !! is the score 
of a randomly selected plan from memory. The probability 
to switch from the current plan to the randomly selected one 
is  

  !!"#$%! = min 1, ! ⋅ !!⋅(!!!!!)/! .  (6) 
The parameter ! reflects the probability to switch when 

both plans have the same score and ! is a sensitivity param-
eter. In this work these parameters are set to (!, !) =
(0.01,1).  

 
3.3 Termination criterion 

The simulation framework should terminate once the de-
sired route assignments haven been reached (i.e. either NE 
or SO). This opens two questions; (i) how to detect whether 
NE or SO have been reached and (ii) does the system con-
verge after all?  

The first question can be answered by performing a sim-
ple test. An intrinsic property of an NE is that nobody can 
find a faster route by unilateral re-routing. Furthermore, the 
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SO corresponds to an NE with respect to the marginal costs 
instead of travel times (Beckmann et al., 1956). Thus, SO 
and NE can be verified by the same test. An according test 
would have to iterate over all pedestrians to create new 
plans. If the new plans are identical to the old ones, the 
system would have reached a fixed point and thus an NE or 
the SO, depending on the cost function. This leads to the 
question of convergence and uniqueness.  

Because of the stochasticity of the system, a fixed point 
might never be reached and convergence and uniqueness 
remain unclear. Instead, the termination criterion is decided 
heuristically by looking at the changes in average travel 
times over iteration cycles. Once those changes remain 
small, the system is in a relaxed state and the simulation 
framework terminates.   

 
4 EXPERIMENTS  

 
The overall performance of the proposed simulation 

framework is demonstrated by a number of computer simu-
lations. Section 4.1 tests the simulation approach on well-
known transportation paradoxes. Section 4.2 investigates 
the reproducibility of laboratory experiments. Scalability 
and computational performance are demonstrated in Section 
4.3. 

 
4.1 Paradoxes in Transportation Networks  

The transportation paradox by Braess (1968) is illustrated 
in Figure 8(a). After an initial long channel, the network 
presents a choice between two paths, a long one (!) with a 
constant travel time and a shorter one (!(!)), the travel 
time of which is affected by the number of travelers. Con-

necting the two nodes at the center, as illustrated by the 
dashed link, will influence the path choice of the travelers, 
leading to a decrease of the network performances. The 
paradox asserts that an improvement to the structure of the 
network can lead to a worsening of the outgoing flow under 
Nash conditions, but does not do so for the SO. To simulate 
the situation defined by the paradox, the pedestrian envi-
ronment has been configured as in Figure 9(a). The two 
narrow corridors (top left and bottom right) represent the 
capacity-restricted short links of the Braess paradox. The 
high capacity links are modeled as wide zigzag corridors 
(bottom left and top right). The central corridor implements 
the special link in the Braess paradox (dashed link in Figure 
8(a)). In the absence of the special link, the pedestrians will 
utilize the upper and the lower path equally. However, once 
the special link is there, at least a fraction of pedestrians 
will walk from the top left narrow corridor via the special 
link to the bottom right narrow corridor. Once this happens, 
the path via the wide bottom left corridor to the narrow 
bottom right corridor becomes slower than the analog path 
along the top. Thus, more and more pedestrians will switch 
to the top left narrow corridor, leading to a complete disuse 
of the bottom right wide corridor. Effectively, the capacity 
of the network will be reduced to that of one single narrow 
corridor.  

A crowd of 2,000 pedestrians walking from the left en-
trance to the right exit of the environment has been set up. 
Figure 10(a) shows the results for the NE approach. In case 
the special link is not present (i.e. the central corridor is 
blocked by obstacles), the average travel time stabilizes at 
about 13 minutes. Once the central corridor becomes avail-
able, the average travel time increases to 22 minutes. Thus, 
the NE route assignment behaves exactly as Braess asserts.  

Figure 8 Graph representations of the network ex-
plained by Braess (1968) (a) and Daganzo (1998) (b). 
Labels of edges represent their cost. 

Figure 9 (a) Implementation of the Braess and (b) Daganzo  
experiments. The environment borders and blue objects 
represent the nodes of the underlying network. 
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Since the SO is a state with minimum average travel 
time, the presence of the special link must have no negative 
impact. As shown in Figure 11(a), where the average travel 
time is about 13 minutes in both cases, the SO approach 
works as expected.  

Daganzo (1998) discusses a generalization of the Braess 
paradox, exemplifying another situation where a structural 
improvement to the network reduces the outflow for NE. 
The described network is reported in Figure 8(b), character-
ized by a choice between a short link containing a bottle-
neck, and a longer but wider one. If the examined network 
is improved by increasing the width of the bottleneck—
until the travel time of the short link is smaller than the 
other one, even in the congested case—the Nash equilibri-
um will imply disuse of the long link, negatively impacting 
the outgoing flow from the network.  

To represent this example, the environment for the CA 
has been designed as in Figure 9(b). Three sets of experi-
ments have been conducted, describing different bottleneck 
widths inside the short link, with a crowd size and arrival 
frequency similar to the configuration of the Braess exper-
iments. NE results are shown in Figure 10(b), explaining 
the key point of the paradox: once a condition of equilibri-
um is reached, the average travel time related to the scenar-

io with the narrowest bottleneck is lower or equal to the 
other ones. Similar to the Braess example, those paradoxes 
are not observed in the SO case, as depicted in Figure 
11(b). 

These observations imply an interesting application of 
the Nash equilibrium and system optimum approach. It is 
generally accepted that travelers try to minimize their indi-
vidual travel time during their daily commutes. Thus, 
transport systems are rather in a state of an NE than in the 
state of the SO. However, as it has been shown in the exper-
iments, there might be situations where the SO solution 
coincides with an NE in a slightly different network. More-
over, the SO also indicates how the network has to be 
changed in order to force an NE towards the SO. An ap-
proach to realize this could make use of the observed flows 
in the SO and use these values as the maximum allowed 
flow for an NE (e.g. by introducing artificial bottlenecks). 
This approach has indeed limitations as it makes the as-
sumption of static flows5. Still, it works for both paradoxes 

                                                             
5 The static flow assumption can be softened to a piece-

wise static flow assumption by introducing dynamic bottle-
necks that can be adapted over time. 

Figure 10 Average travel times for the simulations of the 
Braess (a) and Daganzo (b) paradox scenarios. 

Figure 11 Iterative system optimum search for the sce-
nario of the Braess (a) and Daganzo (b) paradox. 
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discussed in this section. In the Braess example, no pedes-
trian takes the special link in the SO case. This implies that 
when blocking the special link, the NE coincides with the 
system optimum (cf. Figs. 10(a) and 11(a)), which is exact-
ly what is stated in (Braess, 1968). For the Daganzo exper-
iments, it is observed that in the SO case the flow on the 
restricted short link never exceeds the flow that can be 
handled by a bottleneck of 0.4 m width. Thus, restricting 
the flow to this value, the NE also moves towards the SO. 
This has indeed been shown in Figure 10(b). The ratio be-
tween the average travel time of an NE and the SO is also 
known as the price of anarchy. It indicates how much gain 
is possible by changing the layout of the network or the 
behavior of the travelers (cf., e.g., Roughgarden, (2005); 
Youn et al., (2008, 2009) for a detailed discussion on this 
matter).  

 
4.2 Effects of Bidirectional Flows on the System 

The proposed model is tested on two data sets gathered at 
Technical University Berlin in Germany. The first dataset 
describes a bidirectional flow experiment where two groups 
of pedestrians move past each other with an intersection 
angle of 180 degree. The groups consist of 47 and 51 volun-
teers respectively. Details about the experiments and the 
data set are discussed in (Plaue et al., 2011). 

Plaue et al., 2012 report a dataset of a crossing experi-
ment, where two groups of pedestrians cross at an intersec-
tion angle of 90 degrees. The groups consist of 78 and 143 
volunteering university students respectively.  

The general layout is the same for both experiments. The 
CA grid layout is depicted in Figure 12. Solid arrows indi-
cate the movement direction for the 90-degree intersection 
experiment and the solid left-to-right arrows and the dashed 
arrows indicate the movement directions for the 180-degree 
intersection experiment.  

One way to appraise the feasibility of the proposed simu-
lation model is comparing time series for speed and density 
resulting from the simulation with those observed in the 
laboratory experiments. To do so, it is necessary to apply 
the same method to collect the data for both the simulation 
and the experiments. Densities and speeds are measured in 
a 7-by-7 cells area (2.8 m x 2.8 m) as indicated by the 
dashed red square in Figure 12, using a method based on 

Steffen and Seyfried (2010). The CA simulation resolves 
conflicts probabilistically (see Section 2.3). Thus, speeds, 
flows and travel times are stochastic and depend on the 
initial random seed. To appraise this effect, each simulation 
run has been repeated 1,000 times with different random 
seeds, and both the time series of average density (speed) 
and the corresponding standard deviation are reported in the 
following plots. Figure 13 refers to the 180-degree intersec-
tion experiment. It compares the time series of average 
density (a) and average speed (b). There is a good general 
agreement between the simulation and the experiments. The 
standard deviation !" is small, indicating that the dynamics 
produced by the CA simulation is independent of the ran-
dom seed. Towards the end (after 27 sec), there is a devia-
tion in the observed speed. While the simulated speed re-
mains constant, the observed speed from experiment drops. 
One explanation for this deviation is that in the laboratory 
experiments, the last pedestrians walking through the scene 
display a lag of motivation and are walking much slower 
than actually possible6. The proposed CA does not model 
different kinds of motivation but instead always assumes 
that pedestrians are determined to walk to the desired (in-
termediate) target. The modeling of different motivations is 
indeed an open issue; to the best knowledge of the authors, 
no simulation approach that can adequately model those 
concepts exists. The plots for the 90-degree experiment 
with similar results are reported in Figure 14. The deviation 
in speed towards the end (after 40 sec) is even stronger 
compared to the 180-degree experiment. While the density 
in the laboratory experiment approaches zero (Figure 14 
(a)), the speed drops well below 1 m/s (Figure 14 (b)). As 
for the 180-degree intersection experiment, video record-
ings indicate a lag of motivation for the last pedestrians 
walking through the scene. Overall, it is shown that the 
proposed CA reproduces the time series observed in labora-
tory experiments adequately, at least for situations where 
the pedestrians are motivated to walk and do not linger. 
Principally, it would be possible to modify the parameters 
of the CA to display a kind of “lingering” behavior; howev-
er, it is yet unclear how to quantify it. 

 
4.3 Simulation of a Large Scenario  

In the following the results of two large scenario simula-
tions are discussed. The evacuation scenario explained by 
Hoogendoorn et al. (2014) has been chosen as an illustra-
tive example. It describes an area of 50x50 m2, divided into 
5 vertical sections of equal size. From left to right, the first 
3 sections are linked by 1 opening of 2.4 m, while the last 2 
sections are linked by 2 openings of 1.2m. The setting is 
depicted in Figure 15.  

                                                             
6 This lag of motivation is clearly visibly in the video re-
cordings of the experiment. The recordings are available at 
http://www.math.tu-berlin.de/projekte/smdpc/ 

Figure 12 CA grid layout for both 90- and 180-degree 
intersection experiments. 
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In the first experiment (top row Figure 15), a unidirec-
tional flow similar to Hoogendoorn et al. (2014) moves 
through the environment from left to right. Pedestrians 
enter at a rate of 50 pers/s. In the second experiment, an 
additional flow crosses the fourth section from south to 
north (bottom row of Figure 15). The additional crossing-
flow enters the environment at a rate of 10 pers/s. Both 
scenarios have been simulated with the NE route assign-
ment approach. In iteration 1, all pedestrians follow the 
shortest path. This leads to congestion in front of the bot-
tom bottleneck of the middle section. Over the iterations, 
this congestion dissolves. Comparing the two scenarios, the 
effect of the crossing flow is clearly visible. In iteration 5, 
congestion has almost dissolved in the unidirectional flow 
experiment, while in the crossing flow experiment conges-
tion only dissolves in iteration 9. For the unidirectional 
experiment, the qualitative results are similar to those of 
Hoogendoorn (2014). The crossing flow experiment is an 
interesting extension, demonstrating the effect of conflicts 
arising from crossing flows.  
4.4 Computing time analysis  

A computing time analysis for the crossing flow experi-
ment, discussed in the previous section, is shown in Figure 
16 (a). It is evident that route computation never takes more 

than 1 s. Moreover, the computing time for the CA simula-
tion drops over the iterations. A reason for that is that as 
pedestrians find better routes, the overall congestion drops 
and thus the pedestrians reach their destinations earlier. 

A second computing time analysis investigates the 
speedup of the CA simulation (i.e. the ratio of real time and 
computing time). Therefore, a simulation scenario consist-
ing of a huge corridor of 80x640 m! that is crossed by a 
total population of 50,000 pedestrians has been set up. Re-
sults of the speedup analysis are given in Figure 16 (b). It is 
clearly shown that the CA simulation can simulate situa-
tions with up to 13,000 pedestrians in real-time. Moreover, 
the computing time increases only linearly with the number 
of simulated pedestrians.  

 
5 CONCLUSION AND FUTURE WORK 

 
 This contribution presented a simulation approach for 

multi-destination pedestrian crowds in complex environ-
ments. A novel CA simulation model induces the micro-
scopic pedestrian dynamics. The model implements a two-
dimensional representation of the environment with a 
square cells grid. The model reproduces empirically derived 

Figure 13 Time series of density and speed of 180-
degree intersection experiment compared with CA simula-
tion. 

Figure 14 Time series of density and speed of 90-
degree intersection experiment compared with CA simula-
tion. 
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uni- and bidirectional fundamental diagrams (Zhang et al., 
2011, 2012) almost perfectly.  

Route assignments are achieved by an iterative approach. 
Depending on the cost function, the assignments move 
either towards a Nash equilibrium or the System optimum.  

The performance of the model is tested on a set of exper-
iments. The iterative route assignment approach is demon-
strated on the well-known transport paradoxes of Braess 
(1968) and Daganzo (1998).  

The proposed model is able to reproduce the dynamics in 
terms of time series of real life pedestrians stream reasona-
bly well, demonstrated on the experimental data of  

Plaue et al. (2011, 2012).  
A qualitative comparison to the macroscopic large-scale 

evacuation scenario of Hoogendoorn (2014) finds no big 
differences between both simulations. 

The approach simulates scenarios of the size of 10k pe-
destrians faster than real-time. Computing time increases 
only linearly with the number of simulated pedestrians, thus 
much larger real-time scenarios by e.g. parallelization of the 
CA algorithm seem to be achievable. This will be the focus 
of future research.  

A procedure to automatically identify a configuration of 
the environment that moves an NE towards the SO has been 
sketched. The future work will implement this procedure 
more precisely. Another future work will be the implemen-
tation of aggregated behavior like the well-known lane 
formation effect in bidirectional flows. A planned technical 
improvement will allow for variable individual speeds. It 
will then also allow to simulate more complex environ-
ments like multistory buildings which include staircases 
and ramps.  
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