000808763 001__ 808763
000808763 005__ 20210129222854.0
000808763 037__ $$aFZJ-2016-02381
000808763 041__ $$aEnglish
000808763 1001_ $$0P:(DE-Juel1)159313$$aKlosterhalfen, Anne$$b0$$ufzj
000808763 1112_ $$a32nd Conference on Agricultural and Forest Meteorology, American Meteorology Society$$cSalt Lake City$$d2016-06-20 - 2016-06-24$$g32AF, AMS$$wUSA
000808763 245__ $$aSource Partitioning Based on High Frequency Eddy Covariance Data
000808763 260__ $$c2016
000808763 3367_ $$033$$2EndNote$$aConference Paper
000808763 3367_ $$2BibTeX$$aINPROCEEDINGS
000808763 3367_ $$2DRIVER$$aconferenceObject
000808763 3367_ $$2ORCID$$aCONFERENCE_POSTER
000808763 3367_ $$2DataCite$$aOutput Types/Conference Poster
000808763 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1478161557_7780$$xOther
000808763 520__ $$aSource partitioning of eddy covariance measurements is routinely used for a better understanding of the exchange of greenhouse gases, especially between terrestrial ecosystems and the atmosphere. Quantifications of CO2 and H2O fluxes, their dynamics, variabilities and feedbacks with environmental drivers give a better insight of the biosphere’s sensitivity towards global change.The BMBF-funded project “Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement” (IDAS-GHG) aims at comparing and improving existing methods for partitioning of CO2 and H2O fluxes into their respective raw components. Data-driven approaches use existing (raw or processed) data of typical eddy covariance stations. Instrumental approaches of source partitioning require additional measurements at different parts of ecosystems and different methods, e.g. soil-flux chamber measurements, profile measurements or tracer measurements (isotopes).This present study is part of the data-driven approaches, using some results from additional profile measurements to gain further insights. SCANLON and SAHU (2008), and SCANLON and KUSTAS (2010) proposed an interesting method to estimate the contributions of photosynthesis, soil respiration (autotrophic and heterotrophic sources), transpiration and evaporation using measured high-frequency time series of CO2 and H2O fluxes - no extra instrumentation necessary. This method (SK10 in the following) is based on the dissimilarities of sources and sinks of CO2 and water vapor among the sub-canopy, canopy and atmosphere, which lead to unique “signals” in the eddy covariance measurements for air transported from differing locations. Thus, the flux-variance similarity theory is separately applied to the stomatal and non-stomatal components of the regarded fluxes.In this study we apply the SK10 analysis to observations of several agroecosystems, and compare the results to outcomes of other well-known source partitioning methods as well as to chamber and profile measurements. For example, state variables measured in the canopy air are used to test the profile assumption required by SK10 analysis.Scanlon, T.M., Kustas, W.P., 2010. Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agricultural and Forest Meteorology 150 (1), 89-99.Scanlon, T.M., Sahu, P., 2008. On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: A basis for flux partitioning. Water Resources Research 44 (10), W10418, 15 pp.
000808763 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000808763 536__ $$0G:(DE-Juel1)BMBF-01LN1313A$$aIDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)$$cBMBF-01LN1313A$$fNachwuchsgruppen Globaler Wandel 4+1$$x1
000808763 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b1$$ufzj
000808763 7001_ $$0P:(DE-Juel1)144420$$aSchmidt, Marius$$b2$$ufzj
000808763 7001_ $$0P:(DE-Juel1)166467$$aNey, Patrizia$$b3$$ufzj
000808763 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000808763 909CO $$ooai:juser.fz-juelich.de:808763$$pVDB
000808763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159313$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144420$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166467$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000808763 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000808763 9141_ $$y2016
000808763 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808763 920__ $$lyes
000808763 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000808763 980__ $$aposter
000808763 980__ $$aVDB
000808763 980__ $$aI:(DE-Juel1)IBG-3-20101118
000808763 980__ $$aUNRESTRICTED