001     808772
005     20240712101049.0
024 7 _ |2 doi
|a 10.1002/2015JD023749
024 7 _ |2 ISSN
|a 0148-0227
024 7 _ |2 ISSN
|a 2156-2202
024 7 _ |2 ISSN
|a 2169-897X
024 7 _ |2 ISSN
|a 2169-8996
024 7 _ |2 WOS
|a WOS:000379715800016
024 7 _ |2 Handle
|a 2128/16079
024 7 _ |a altmetric:6926215
|2 altmetric
037 _ _ |a FZJ-2016-02389
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, L.
|b 0
|e Corresponding author
245 _ _ |a Lagrangian transport simulations of volcanic sulfur dioxide emissions: impact of meteorological data products
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512379495_12592
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Sulfur dioxide (SO2) emissions from strong volcanic eruptions are an important natural cause for climate variations. We applied our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) to perform simulations for three case studies of volcanic eruption events. The case studies cover the eruptions of Grímsvötn, Iceland, Puyehue-Cordón Caulle, Chile, and Nabro, Eritrea, in May and June 2011. We used SO2 observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach to initialize the simulations. Besides validation of the new model, the main goal of our study was a comparison of simulations with different meteorological data products. We considered three reanalyses (ERA-Interim, MERRA, and NCAR/NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. Qualitatively, the SO2 distributions from the simulations compare well with the AIRS data, but also with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aerosol observations. Transport deviations and the critical success index (CSI) are analyzed to evaluate the simulations quantitatively. During the first 5 or 10 days after the eruptions we found the best performance for the ECMWF analysis (CSI range of 0.25–0.31), followed by ERA-Interim (0.25–0.29), MERRA (0.23–0.27), and NCAR/NCEP (0.21–0.23). High temporal and spatial resolution of the meteorological data does lead to improved performance of Lagrangian transport simulations of volcanic emissions in the upper troposphere and lower stratosphere.
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)151377
|a Rößler, T.
|b 1
700 1 _ |0 P:(DE-Juel1)129121
|a Griessbach, S.
|b 2
700 1 _ |0 P:(DE-Juel1)165650
|a Heng, Yi
|b 3
700 1 _ |0 P:(DE-Juel1)3709
|a Stein, O.
|b 4
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1002/2015JD023749
|n 9
|p 4651–4673
|t Journal of geophysical research / Atmospheres
|v 121
|x 2169-897X
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/808772/files/Hoffmann_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808772/files/Hoffmann_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808772/files/Hoffmann_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808772/files/Hoffmann_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808772/files/Hoffmann_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808772/files/Hoffmann_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:808772
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)151377
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129121
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165650
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)3709
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 0
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J GEOPHYS RES : 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-8-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21