000808781 001__ 808781 000808781 005__ 20210129222901.0 000808781 0247_ $$2doi$$a10.1007/s00424-015-1768-3 000808781 0247_ $$2ISSN$$a0031-6768 000808781 0247_ $$2ISSN$$a1432-2013 000808781 0247_ $$2WOS$$aWOS:000370177200010 000808781 0247_ $$2altmetric$$aaltmetric:4909666 000808781 0247_ $$2pmid$$apmid:26687113 000808781 037__ $$aFZJ-2016-02397 000808781 082__ $$a610 000808781 1001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b0$$eCorresponding author$$ufzj 000808781 245__ $$aMolecular physiology of EAAT anion channels 000808781 260__ $$aBerlin$$bSpringer$$c2016 000808781 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1461677370_18326 000808781 3367_ $$2DataCite$$aOutput Types/Journal article 000808781 3367_ $$00$$2EndNote$$aJournal Article 000808781 3367_ $$2BibTeX$$aARTICLE 000808781 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000808781 3367_ $$2DRIVER$$aarticle 000808781 520__ $$aGlutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1–5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein. 000808781 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000808781 588__ $$aDataset connected to CrossRef 000808781 7001_ $$0P:(DE-Juel1)157846$$aKortzak, Daniel$$b1$$ufzj 000808781 7001_ $$0P:(DE-Juel1)156429$$aMachtens, Jan-Philipp$$b2$$ufzj 000808781 773__ $$0PERI:(DE-600)1463014-x$$a10.1007/s00424-015-1768-3$$gVol. 468, no. 3, p. 491 - 502$$n3$$p491 - 502$$tPflügers Archiv$$v468$$x1432-2013$$y2016 000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.pdf$$yRestricted 000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.gif?subformat=icon$$xicon$$yRestricted 000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.jpg?subformat=icon-180$$xicon-180$$yRestricted 000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.jpg?subformat=icon-640$$xicon-640$$yRestricted 000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.pdf?subformat=pdfa$$xpdfa$$yRestricted 000808781 909CO $$ooai:juser.fz-juelich.de:808781$$pVDB 000808781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000808781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157846$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000808781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156429$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000808781 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000808781 9141_ $$y2016 000808781 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000808781 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000808781 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPFLUG ARCH EUR J PHY : 2014 000808781 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000808781 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000808781 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000808781 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000808781 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000808781 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000808781 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000808781 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000808781 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000808781 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000808781 920__ $$lyes 000808781 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0 000808781 980__ $$ajournal 000808781 980__ $$aVDB 000808781 980__ $$aUNRESTRICTED 000808781 980__ $$aI:(DE-Juel1)ICS-4-20110106 000808781 981__ $$aI:(DE-Juel1)IBI-1-20200312