000808781 001__ 808781
000808781 005__ 20210129222901.0
000808781 0247_ $$2doi$$a10.1007/s00424-015-1768-3
000808781 0247_ $$2ISSN$$a0031-6768
000808781 0247_ $$2ISSN$$a1432-2013
000808781 0247_ $$2WOS$$aWOS:000370177200010
000808781 0247_ $$2altmetric$$aaltmetric:4909666
000808781 0247_ $$2pmid$$apmid:26687113
000808781 037__ $$aFZJ-2016-02397
000808781 082__ $$a610
000808781 1001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b0$$eCorresponding author$$ufzj
000808781 245__ $$aMolecular physiology of EAAT anion channels
000808781 260__ $$aBerlin$$bSpringer$$c2016
000808781 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1461677370_18326
000808781 3367_ $$2DataCite$$aOutput Types/Journal article
000808781 3367_ $$00$$2EndNote$$aJournal Article
000808781 3367_ $$2BibTeX$$aARTICLE
000808781 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808781 3367_ $$2DRIVER$$aarticle
000808781 520__ $$aGlutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1–5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein.
000808781 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000808781 588__ $$aDataset connected to CrossRef
000808781 7001_ $$0P:(DE-Juel1)157846$$aKortzak, Daniel$$b1$$ufzj
000808781 7001_ $$0P:(DE-Juel1)156429$$aMachtens, Jan-Philipp$$b2$$ufzj
000808781 773__ $$0PERI:(DE-600)1463014-x$$a10.1007/s00424-015-1768-3$$gVol. 468, no. 3, p. 491 - 502$$n3$$p491 - 502$$tPflügers Archiv$$v468$$x1432-2013$$y2016
000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.pdf$$yRestricted
000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.gif?subformat=icon$$xicon$$yRestricted
000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.jpg?subformat=icon-180$$xicon-180$$yRestricted
000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.jpg?subformat=icon-640$$xicon-640$$yRestricted
000808781 8564_ $$uhttps://juser.fz-juelich.de/record/808781/files/art_10.1007_s00424-015-1768-3.pdf?subformat=pdfa$$xpdfa$$yRestricted
000808781 909CO $$ooai:juser.fz-juelich.de:808781$$pVDB
000808781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157846$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808781 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156429$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808781 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000808781 9141_ $$y2016
000808781 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808781 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000808781 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPFLUG ARCH EUR J PHY : 2014
000808781 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808781 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808781 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808781 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808781 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000808781 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808781 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000808781 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808781 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000808781 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808781 920__ $$lyes
000808781 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000808781 980__ $$ajournal
000808781 980__ $$aVDB
000808781 980__ $$aUNRESTRICTED
000808781 980__ $$aI:(DE-Juel1)ICS-4-20110106
000808781 981__ $$aI:(DE-Juel1)IBI-1-20200312