TY  - CONF
AU  - Leger, Raphael
AU  - Alvarez Mallon, Damian
AU  - Duran, Alejandro
AU  - Lanteri, Stephane
TI  - Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform
VL  - 27
PB  - IOS Press Ebooks
M1  - FZJ-2016-02415
T2  - Advances in Parallel Computing
SP  - 349 - 359
PY  - 2016
AB  - In this paper, we report on our recent efforts towards adapting a Discontinuous Galerkin Time-Domain solver for computational bioelectromagnetics to the novel, heterogeneous architecture proposed in the DEEP-ER european project on exascale computing. This architecture is based on the Cluster/Booster division concept which will be recalled. As a first step, we summarize the key features of the application and present the outcomes of a profiling of the code using the tools developed by DEEP-ER partners. We then go through the subsequent general improvements of the application as well as specific developments aimed at exploiting efficiently the DEEP-ER platform. This particularly includes porting the application to the Intel®Many Integrated Core Architecture. We conclude with an outlook on next steps, including the different Cluster/Booster division strategies.
T2  - International Conference on Parallel Computing 2015
CY  - 1 Sep 2015 - 4 Sep 2015, Edinburgh (UK)
Y2  - 1 Sep 2015 - 4 Sep 2015
M2  - Edinburgh, UK
LB  - PUB:(DE-HGF)8 ; PUB:(DE-HGF)7
UR  - <Go to ISI:>//WOS:000578348400035
DO  - DOI:10.3233/978-1-61499-621-7-349
UR  - https://juser.fz-juelich.de/record/808799
ER  -