000808819 001__ 808819
000808819 005__ 20240712101049.0
000808819 0247_ $$2doi$$a10.5194/acp-2016-336
000808819 0247_ $$2ISSN$$a1680-7367
000808819 0247_ $$2ISSN$$a1680-7375
000808819 0247_ $$2Handle$$a2128/10430
000808819 0247_ $$2altmetric$$aaltmetric:6984146
000808819 037__ $$aFZJ-2016-02432
000808819 082__ $$a550
000808819 1001_ $$0P:(DE-HGF)0$$aSarrafzadeh, Mehrnaz$$b0
000808819 245__ $$aImpact of NO$_{x}$ and OH on secondary organic aerosol (SOA) formation from β-pinene photooxidation
000808819 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000808819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1461824020_15570
000808819 3367_ $$2DataCite$$aOutput Types/Journal article
000808819 3367_ $$00$$2EndNote$$aJournal Article
000808819 3367_ $$2BibTeX$$aARTICLE
000808819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808819 3367_ $$2DRIVER$$aarticle
000808819 520__ $$aIn this study, the NOx dependence of secondary organic aerosol (SOA) formation from β-pinene photooxidation was comprehensively investigated in the Jülich Plant Atmosphere Chamber. Consistent with the results of previous NOx studies we found increases of SOA yields at low NOx conditions ([NOx]0 < 30 ppb, [BVOC]0/[NOx]0 > 10 ppbC ppb−1). Furthermore, increasing [NOx] at high NOx conditions ([NOx]0 > 30 ppb, [BVOC]0/[NOx]0 ~ 10 to ~ 2.6 ppbC ppb−1) suppressed the SOA yield. The increase of SOA yield at low NOx conditions was attributed to increase of OH concentration, most probably by OH recycling in NO + HO2 → NO2 + OH reaction. Separate measurements without NOx addition but with different OH primary production rates confirmed the OH dependence of SOA yields. After removing the effect of OH concentration on SOA mass growth by keeping the OH concentration constant, SOA yields only decreased with increasing [NOx]. Measuring the NOx dependence of SOA yields at lower [NO]/[NO2] ratio showed less pronounced increase in both; OH concentration and SOA yield. This result was consistent to our assumption of OH recycling by NO and to SOA yields being dependent on OH concentrations. It furthermore indicated that NOx dependencies vary for different NOx compositions. A substantial fraction of the NOx-induced decrease of SOA yields at high NOx conditions was caused by NOx-induced suppression of new particle formation (NPF). This was shown by probing the NOx dependence of SOA formation in the presence of seed particles. After eliminating the effect of NOx-induced suppression of NPF and NOx induced changes of OH concentrations, the overall effect of NOx on the SOA yield from β-pinene photooxidation was moderate. Comparing with β-pinene experiments, the SOA formation from α-pinene photooxidation was only suppressed by increasing NOx. However, basic mechanisms of the NOx impacts were the same as that of β-pinene.
000808819 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000808819 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000808819 588__ $$aDataset connected to CrossRef
000808819 7001_ $$0P:(DE-Juel1)129421$$aWildt, Jürgen$$b1$$eCorresponding author$$ufzj
000808819 7001_ $$0P:(DE-Juel1)156385$$aPullinen, Iida$$b2$$ufzj
000808819 7001_ $$0P:(DE-Juel1)142073$$aSpringer, Monika$$b3$$ufzj
000808819 7001_ $$0P:(DE-Juel1)129345$$aKleist, Einhard$$b4$$ufzj
000808819 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b5$$ufzj
000808819 7001_ $$0P:(DE-Juel1)161557$$aSchmitt, Sebastian$$b6$$ufzj
000808819 7001_ $$0P:(DE-Juel1)145715$$aWu, Cheng$$b7$$ufzj
000808819 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b8$$ufzj
000808819 7001_ $$0P:(DE-HGF)0$$aHastie, Donald R.$$b9
000808819 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b10$$ufzj
000808819 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2016-336$$gp. 1 - 30$$p1 - 30$$tAtmospheric chemistry and physics / Discussions$$v $$x1680-7375$$y2016
000808819 8564_ $$uhttps://juser.fz-juelich.de/record/808819/files/acp-2016-336-1.pdf$$yOpenAccess
000808819 8564_ $$uhttps://juser.fz-juelich.de/record/808819/files/acp-2016-336-1.gif?subformat=icon$$xicon$$yOpenAccess
000808819 8564_ $$uhttps://juser.fz-juelich.de/record/808819/files/acp-2016-336-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808819 8564_ $$uhttps://juser.fz-juelich.de/record/808819/files/acp-2016-336-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808819 8564_ $$uhttps://juser.fz-juelich.de/record/808819/files/acp-2016-336-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808819 8564_ $$uhttps://juser.fz-juelich.de/record/808819/files/acp-2016-336-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808819 909CO $$ooai:juser.fz-juelich.de:808819$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129421$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156385$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142073$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161557$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145715$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000808819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000808819 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000808819 9141_ $$y2016
000808819 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808819 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000808819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808819 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000808819 920__ $$lyes
000808819 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000808819 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000808819 9801_ $$aUNRESTRICTED
000808819 9801_ $$aFullTexts
000808819 980__ $$ajournal
000808819 980__ $$aVDB
000808819 980__ $$aUNRESTRICTED
000808819 980__ $$aI:(DE-Juel1)IEK-8-20101013
000808819 980__ $$aI:(DE-Juel1)IBG-2-20101118
000808819 981__ $$aI:(DE-Juel1)ICE-3-20101013
000808819 981__ $$aI:(DE-Juel1)IBG-2-20101118