
Mehrnaz Sarrafzadeh
1,3

, Jürgen Wildt
2
, Iida Pullinen

1
, Monika Springer

1
, Einhard Kleist

2
, 

Ralf Tillmann
1
, Sebastian H. Schmitt

1
, Cheng Wu

1
, Thomas F. Mentel

1
, Donald R. Hastie

3
, 

 

and Astrid Kiendler-Scharr
1
  

 

1.  Institute for Energy and Climate Research, IEK-8, Forschungszentrum Jülich, 52425, Jülich, 

Germany 

2. Institute of Bio- and Geosciences, IBG-2, Forschungszentrum Jülich, 52425, Jülich, 

Germany 

3.  Centre for Atmospheric Chemistry, York University, 4700 Keele St., Toronto, ON M3J 1P3, 

Canada 

 

Correspondence to: J. Wildt (j.wildt@fz-juelich.de)  

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-336, 2016

Manuscript under review for journal Atmos. Chem. Phys.

Published: 27 April 2016

c© Author(s) 2016. CC-BY 3.0 License.



Abstract 

In this study, the NOx dependence of secondary organic aerosol (SOA) formation from -pinene 

photooxidation was comprehensively investigated in the Jülich Plant Atmosphere Chamber. 

Consistent with the results of previous NOx studies we found increases of SOA yields at low 

NOx conditions ([NOx]0 < 30 ppb, [BVOC]0/[NOx]0 > 10 ppbC ppb-1). Furthermore, increasing 

[NOx] at high NOx conditions ([NOx]0 > 30 ppb, [BVOC]0/[ NOx]0 ~10 to ~2.6 ppbC ppb-1) 

suppressed the SOA yield. The increase of SOA yield at low NOx conditions was attributed to 

increase of OH concentration, most probably by OH recycling in NO + HO2  NO2 + OH 

reaction. Separate measurements without NOx addition but with different OH primary production 

rates confirmed the OH dependence of SOA yields. After removing the effect of OH 

concentration on SOA mass growth by keeping the OH concentration constant, SOA yields only 

decreased with increasing [NOx]. Measuring the NOx dependence of SOA yields at lower 

[NO]/[NO2] ratio showed less pronounced increase in both; OH concentration and SOA yield. 

This result was consistent to our assumption of OH recycling by NO and to SOA yields being 

dependent on OH concentrations. It furthermore indicated that NOx dependencies vary for 

different NOx compositions. A substantial fraction of the NOx-induced decrease of SOA yields at 

high NOx conditions was caused by NOx-induced suppression of new particle formation (NPF). 

This was shown by probing the NOx dependence of SOA formation in the presence of seed 

particles. After eliminating the effect of NOx-induced suppression of NPF and NOx induced 

changes of OH concentrations, the overall effect of NOx on the SOA yield from -pinene 

photooxidation was moderate. Comparing with -pinene experiments, the SOA formation from 

-pinene photooxidation was only suppressed by increasing NOx. However, basic mechanisms of 

the NOx impacts were the same as that of β-pinene. 
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1. Introduction 

Biogenic volatile organic compounds (BVOC), such as monoterpenes (C10H16) are emitted in 

large quantities into the atmosphere (Guenther et al., 1995, 2012; Griffin et al., 1999a). These 

BVOCs are oxidized in the atmosphere by hydroxyl radicals (OH), ozone (O3), or nitrate radicals 

(NO3) resulting in the formation of secondary organic aerosol (SOA). SOA contributes to a 

substantial fraction of ambient organic aerosol and is known to adversely affect visibility, 

climate and human health (Hallquist et al., 2009). 

SOA formation potentials of BVOC species are represented by SOA yields which are generally 

defined as the ratio of the SOA mass produced from the oxidation of the SOA precursor to the 

mass of the precursor consumed (Odum et al., 1996). Despite the fact that many studies have 

focused on the production of SOA from a number of monoterpenes, reported SOA yields have 

shown high variability for a given precursor (Pandis et al., 1991; Hoffmann et al., 1997; Griffin 

et al., 1999b; Larsen et al., 2001; Presto et al., 2005; Kroll et al., 2006; Ng et al., 2007; Mentel et 

al., 2009; Eddingsaas et al., 2012a). For instance, the reported SOA mass yield for -pinene 

photooxidation ranges from 8 % to 37 % (Eddingsaas et al., 2012a). This variability is likely 

related to the numerous factors that influence the SOA yields, such as the inorganic and organic 

mass loading, particle acidity, NOx (NOx = NO + NO2) level, humidity, and temperature. 

Therefore, ambient SOA yields cannot be represented by a unique value for a given monoterpene 

as the yields are heavily dependent on the conditions under which the SOA is formed. 

One of the critical factors is the impact of NOx on SOA formation. Results of the majority of 

studies indicate that SOA yields are lower at high NOx levels (Hatakeyama et al., 1991; Pandis et 

al., 1991; Presto et al., 2005; Kroll et al., 2006;  Ng et al., 2007). It is generally assumed that the 

impact of NOx results from altering the balance between competing peroxy-radical (RO2) 
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reactions and thus from the changes in the distribution of oxidation products. Reaction (R1) is 

the dominant pathway for RO2 radicals under low-NOx conditions which leads to the formation 

of low-volatility hydroperoxides that can participate in new particle formation (NPF) and 

contribute to SOA mass (Johnson et al., 2005; Camredon et al., 2007). 

RO2 + HO2  ROOH + O2         (R1) 

Under high-NOx conditions, RO2 radicals react with NO resulting in the formation of organic 

nitrates (R2a) which are suggested to be relatively volatile as well as alkoxy radicals (R2b) that 

either fragment, or react to form more volatile products. This understanding implies that higher 

NOx concentrations will suppress the formation of low volatility products, and thereby suppress 

NPF and SOA mass formation. 

NO + RO2  RONO2          (R2a) 

NO + RO2  RO + NO2         (R2b) 

Despite numerous studies of SOA formation from terpene ozonolysis, the SOA formation from 

OH oxidation of -pinene has been scarcely investigated. In the present study we investigated the 

SOA formation from -pinene photooxidation under varied NOx levels in the Jülich Plant 

Atmosphere Chamber (JPAC) to gain more insight into the impact of NOx on SOA yield. Since 

the [BVOC]/[NOx] ratio varies significantly in urban atmospheres, the quantification of the 

effect of NOx on SOA yield of biogenic precursors is needed to better predict air pollution and to 

improve the accuracy of current ambient models.  
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2. Experimental 

The experimental setup of JPAC is described in detail elsewhere (Mentel et al., 2009, 2015). The 

chamber is 1450 litre in volume, made of borosilicate glass and set up in a climate-controlled 

housing. Temperature and relative humidity inside the chamber were held constant at 16 ± 1
o
C 

and 63 ± 2%, respectively over the course of the experiments. The chamber was operated as a 

continuously stirred tank reactor with a residence time of approximately 46 min. The flow into 

the chamber consisted of two purified air streams. One stream was passed through an ozonator 

and was humidified with double distilled water. The other stream contained -pinene emitted 

from a diffusion/permeation source held at 38°C. Where necessary seed particles could be 

generated externally and introduced using a third air stream. 

The chamber was equipped with several lamps; 12 discharge lamps (HQI 400 W/D; Osram) to 

simulate the solar light spectrum in the chamber, 12 discharge lamps (Phillips, TL 60 W/10-R, 

60W, max =365 nm, from here on termed UVA lamps) for NO2 photolysis, and one internal 

UVC lamp (Philips, TUV 40W, max =254 nm; here termed as TUV lamp) for ozone photolysis 

to produce OH radicals by reaction of water vapour with O(
1
D) atoms. The TUV lamp could be 

shielded by glass tubes to control the amount of UV radiation entering the chamber. Thus, by 

altering the gap between these glass tubes, the OH production rate could be adjusted by varying 

the photolysis rate J(O
1
D). It has to be noted that the short wavelength cut off of the glass is 

around 350 nm and thus no light with wavelength short enough to produce O
1
D is in the chamber 

when the TUV lamp is off. Furthermore, the absorption cross section of NO2 at the wavelength 

of the TUV lamp is more than an order of magnitude lower than at wavelengths around 365 nm 

(Davidson et al., 1988). Together with the quite low energy of the TUV lamp compared to the 

energy of the UVA lamps, this allowed varying J(O1D) and J(NO2) independent of each other. 
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A suite of instruments were used to measure both the gas and particle phase products. Ozone 

concentration was determined by UV photometric devices (Thermo Environmental 49 and 

Ansyco, O3 42M ozone analyzers), NO was measured by chemiluminescence (Eco Physics, CLD 

770 AL ppt), NO2 by chemiluminescence after photolysis (Eco Physics, PLC 760) and relative 

humidity was measured by dew point mirror (TS-2, Walz). Furthermore, a condensation particle 

counter (CPC, TSI 3783) and a scanning mobility particle sizer (SMPS, combination of a TSI 

3081 electrostatic classifier and a TSI 3025 CPC) were used to count the total particle number 

greater than 3 nm and to measure the particle size distribution between 13 and 740 nm 

respectively. The total particle mass concentration was estimated from the measured total aerosol 

volume assuming a SOA density of ~ 1.2 g cm-3 and spherical particles. -pinene mixing ratio in 

the chamber was determined by gas chromatography–mass spectrometry (GC-MS, Agilent GC-

MSD system with HP6890 GC and 5973 MSD) and a proton transfer reaction mass spectrometer 

(PTR-MS, Ionicon). The GC-MS and PTR-MS were switched periodically between the outlet 

and the inlet of the chamber to quantify concentrations of -pinene entering and exiting the 

chamber. The OH concentration was estimated from the decay of -pinene in the chamber (Eq. 

2) (Kiendler-Scharr et al., 2009). 

 (1) 

 

(2) 

Equation (1) is the basic rate equation for a continuously stirred tank reactor resulting from mass 

balance and Eq. (2) results from Eq. (1) under steady state conditions when solving for [OH]. In 

Eqs. (1) and (2), V is the volume of the chamber and F is the total air flow through the chamber. 
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[ p]in and [ p] are the concentrations of -pinene in the inlet air and in the chamber, respectively. 

For a well-mixed continuously stirred tank reactor, [ p] is the concentration of -pinene 

measured in the outlet flow.  and  are the rate constants of reactions of -pinene with OH 

and with O3. Since -pinene has a quite low rate constant with O3 (  =1.5 × 10
-17

 cm
3
 s

-1 

(Atkinson and Arey, 2003)), the reaction of -pinene with O3 could be neglected from Eq. (2) for 

our ozone- (50-100 ppb) and OH concentrations (9 × 10
6
 – 1.6 × 10

8
 cm

-3
 ). The uncertainty in 

OH concentration was estimated to be approximately 20% (Wildt et al., 2014). 

SOA yields were determined as described in Mentel et al. (2009), by calculating incremental 

yields from the formed particle mass as a function of consumed precursor mass. However, 

different from the procedure described in Mentel et al. (2009), here we use particle masses 

corrected for wall losses of extremely low volatile organic compounds (ELVOC) that are direct 

particle precursors.  

Briefly, wall losses and losses on particles were determined for the ELVOCs. Using the 

respective loss rates, the fraction of ELVOCs contributing to particle mass formation (dependent 

on particle surface) and the fraction of ELVOCs lost on chamber walls were calculated. The ratio 

of total loss rate divided by loss on particles was taken as correction factor allowing the 

determination of the particle mass that would have been obtained if there were no wall losses. 

Experiments with -pinene and -pinene verified the correction procedure for a wide range of 

particle surfaces. The derivation of the correction method is described in detail in the 

supplement. Note that this procedure is only valid for the chamber used in these experiments. 

Additionally, we used another approach to determine the mass yields at steady state conditions. 

Correcting measured particle masses by the above mentioned procedure revealed that after an 
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induction time of ~ 20 minutes, the wall loss corrected particle mass was constant as long as the 

OH production rate was constant. This allowed determining yields using steady state 

assumptions. Yields were determined by dividing the particle mass formed in the experiment by 

the oxidation rate of the BVOC. At our method of [OH] determination, using the BVOC 

consumption according to Eq. (2), and at the negligible inflow of particle mass into the chamber, 

this equals the simple mass balance assumption: produced particle mass divided by BVOC 

consumption (Eq. 3). 

 (3) 

As was expected from the consistency of wall loss corrected particle masses, both procedure of 

yield determinations led to identical results. However, the method using steady state conditions 

had advantages since adjustments of [OH] were required during many experiments. The 

justification to use both type of yield determinations is given in the supplement. 

2.1. Experimental procedure 

A series of -pinene photooxidation experiments were performed in the JPAC to investigate the 

SOA formation under low-NOx (here defined as: [NOx]0 < 30 ppb, [BVOC]0/[NOx]0 > 10) and 

high-NOx (here defined as: [NOx]0 > 30 ppb, [BVOC]0/[NOx]0< 10) conditions. In these 

experiments, the inflow of -pinene (95 %, Aldrich) to the chamber was kept constant, leading to 

initial mixing ratios of 37 ± 0.6 ppb. Initial O3 concentration was 40 ± 5 ppb. NO2 (Linde, 104 ± 

3 ppm NO2 in nitrogen) was introduced into the -pinene air stream. Initial NOx concentrations, 

[NOx]0, in the chamber were varied between < 1 ppb and 146 ppb. The chamber was illuminated 

with one of the HQI lamps and all the UVA lamps, resulting in an NO2 photolysis frequency 

(J(NO2)) of 4.3×10
−3

 s
−1

. When VOC-, NOx- and O3 concentrations in the chamber were near to 
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steady state, the experiment was initiated by turning on the TUV lamp resulting in OH radical 

production. During the described experiments, a constant J(O1D) was maintained. Experiments 

without NOx addition were performed between NOx experiments. In these cases, residual NOx 

concentrations from chamber walls were below 1 ppb. 

After initiating the OH production, -pinene and NOx concentrations decreased due to their 

reactions with OH radicals. The majority of the results presented in this study are from steady 

state measurements, when all physical and chemical parameters were constant in the chamber. 

However, for the purpose of comparison with the literature data, the initial concentration of NOx, 

[NOx]0, and -pinene, [BVOC]0, were also used here. 

To investigate the role of NOx on SOA formation in the presence of inorganic aerosol, -pinene 

photooxidation/NOx experiments were repeated in the presence of seed aerosol. Seed particles 

were generated from a 40 mg/L aqueous (NH4)2SO4 solution, passed through a diffusion drier 

and then introduced into the chamber. For these experiments, the organic particle mass was 

determined by subtracting the initial seed aerosol mass from the total particle mass. 

3. Results and discussion 

3.1. Impact of NOx on SOA formation 

To determine the influence of NOx on SOA formation, a series of NOx experiments were 

conducted in the JPAC in which -pinene was oxidized in the absence of inorganic seed aerosol. 

A summary of experimental conditions and results for the -pinene/NOx photooxidation 

experiments is given in Table 1. Figure 1 shows SOA yields, calculated from wall-loss corrected 

maximum particle mass concentration (PMmax), as a function of [BVOC]0/[NOx]0 ratio and 

[NOx]0. The strong dependence of SOA yield on BVOC/NOx levels is evident. At low NOx 
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conditions an increase in the initial NOx concentration increases the SOA yield, whereas at high 

NOx concentrations the opposite SOA yield dependence on NOx was observed. Similar NOx 

dependencies of SOA yields have been observed in previous studies (Pandis et al., 1991; Kroll et 

al., 2006; Zhang et al., 1992; Camredon et al., 2007). 

At high NOx conditions strong depletion of SOA yield as well as NPF was observed with 

increasing NOx (Fig. 1). Wildt et al. (2014) made similar observations for NPF during the 

photooxidation of a BVOC mix emitted from Mediterranean plants. However, the NOx 

dependence of SOA yield was differed from that shown by Wildt et al. (2014). At low NOx 

concentrations we observed an increasing SOA yield with increasing NOx (Fig. 1). At high NOx 

levels, the yields decreased. Having different NOx dependencies at different NOx regimes 

suggests multiple factors at play.  

Kroll et al. (2006) suggested that the increase in SOA yield with NOx could be due to changes in 

the [NO]/[HO2] ratio. As experiments in batch reactors proceed, NOx concentrations decrease 

due to their reactions with OH resulting in a switch from high NOx to low NOx conditions. The 

lowered NO concentrations cause increasing HO2 concentrations due to reaction (R3): 

NO + HO2  NO2 + OH         (R3) 

In such experiments, peroxy radicals initially react mainly with NO, whereas peroxy radicals 

formed later from first generation products, primarily react with HO2. Although the reason for 

the observed increase of SOA yield with increasing NOx at low NOx levels was not fully 

explored, Camredon et al. (2007) noted that this could be due to the influence of OH levels. 

However, in the majority of studies investigating the impact of NOx on SOA formation, OH 
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concentration was either not measured or the potential influence of OH was not discussed 

(Eddingsaas et al., 2012a, 2012b). 

As the NOx concentration is changed in this study, the concentration of OH was found to change 

markedly (Fig. 2). OH concentrations passed through a maximum (~ 3.8 x 10
7
 molecules cm

-3
) at 

[NOx]ss ~40 ppb ([NOx]0 ~ 70 ppb) which represented a fourfold increase over that in the absence 

of NOx. NOx enhanced OH production in two ways: by increasing [O3] and thereby the 

photolytic OH source, and by recycling OH through reaction (R3). However, at very high NOx 

concentrations, NOx is acting as a sink for OH due to Reaction (R4): 

NO2 + OH (+M)  HNO3 (+M)         (R4) 

Therefore, as illustrated in Fig. 2, OH concentration increased rapidly with increasing NOx, 

reached a maximum value and then decreased gradually. In general terms this is consistent with 

the nonlinear dependence of OH concentration on NOx level in the lower Troposphere (Ehhalt 

and Rohrer, 1995). 

It appeared in Fig. 2 that the SOA yields were somehow related to [OH]. Thus, we performed 

some experiments to further explore the dependence of SOA formation on OH concentration. 

3.1.1.  [OH] dependence of SOA mass formation 

To examine whether or not SOA yield depends on the OH concentration, additional experiments 

were performed at two different OH production rates and the -pinene concentration varied to 

give a range of SOA mass. The detailed experimental conditions are summarized in Table 2. 

Two different J(O
1
D) conditions (1.9 ± 0.2 ×10

-3
 s

-1
 and 5.4 ± 0.5 ×10

-3
 s

-1
) were used to give 

significantly different OH production rates at otherwise unchanged conditions. Figure 3 shows 
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particle mass as a function of consumed -pinene ranging from 20 to 140 µg m
-3

. Approximately 

90-95 % of the total -pinene was consumed in these experiments. 

The OH concentrations were 4 × 10
7
 – 1 × 10

8
 molecules cm

−3
 and 1.1 – 1.6 × 10

8
 molecules 

cm
−3

 under low and high OH conditions, respectively. The SOA yields (incremental yields, see 

Mentel et al., (2009) and the supplement to this paper) were higher at higher OH levels (31 ± 3 

% and 20 ± 1 % for high and low OH conditions, respectively).  

In discussing possible reasons for the OH impact, it is crucial to consider secondary reactions. As 

an example, the rate constant for the reaction of -pinene + OH is higher than that of the reaction 

of nopinone + OH. Nopinone is a major product of -pinene oxidation (Atkinson and Arey, 

2003). Thus in the stirred flow reactor, where the oxidation of -pinene does not go to 

completion, there is an appreciable concentration of nopinone. Increasing the OH concentration 

will therefore result in more nopinone consumption and, if nopinone oxidation also forms SOA 

mass, this additional oxidation forms more SOA mass. As a result, SOA mass will be higher at 

higher OH concentrations and thus, SOA yield based on the consumption of -pinene will be 

higher. Similarly, such sequential OH reactions can also form SOA mass in reactions with other 

-pinene oxidation products. Another possibility might be the OH dependence of ELVOCs 

formation. Formation of such molecules might require more than one OH reaction. 

From our data we cannot decide which process plays a major role for the OH dependence of 

yields. Nevertheless, the results of these experiments affirm the importance of actual OH 

concentrations in SOA mass formation. This complicates the assignment of the observed changes 

in SOA yield to the impact of NOx on peroxy radical chemistry, as SOA yield was also likely 
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varied with [OH]. Thus, we undertook a series of experiments to decouple the impacts of OH and 

NOx on SOA formation. 

3.1.2. Isolate the effect of [OH] on SOA formation 

To examine the impact of NOx on SOA production independent of [OH]-changes, a series of 

experiments were performed where the steady state OH concentration was held constant by 

tuning the value of J(O
1
D). This required constant [OH] monitoring as the system approached 

steady state, i.e. monitoring the consumption of -pinene, to ensure the [OH] was adjusted to the 

desired level. Although there was a significant variation in initial OH concentrations on adding 

NOx if J(O1D) was unchanged, it was possible to maintain the OH concentrations to within 5 % 

across all NOx concentrations by adjusting J(O
1
D) (Fig. 4). Figure 5 shows the SOA yield as a 

function of [NOx] during the steady state before and after [OH] adjustment. Before adjusting 

[OH] the yield profile was consistent with our previous results; SOA yield increased with 

increasing NOx at low NOx levels and then dropped at high NOx levels. After adjusting [OH], the 

yield revealed no increase at low NOx levels. It was only suppressed by increasing NOx. This 

indicated that the observed increase in SOA yield without adjusting [OH] is a result of NOx 

enhancing [OH] and not a direct impact of NOx on the SOA production. Thus isolating the effect 

of [OH] revealed that increasing [NOx] only suppressed particle mass formation, and therefore 

also suppressed SOA mass yield. 

3.2. Role of NO/NO2 ratio in SOA formation 

We also investigated the effect of the [NO]/[NO2] ratio on SOA formation from -pinene/NOx 

mixtures. To change this ratio we changed [O3]. Ozone, NO and NO2 are interrelated as 

illustrated in Reactions (R5) and (R6): 
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NO + O3  NO2 + O2          (R5) 

NO2 + O2 + h   NO + O3         (R6) 

Neglecting reactions of NO with peroxy radicals the [NO]/[NO2] ratio can then be described by 

the photostationary steady state (Leighton, 1961): 

 (4) 

where J(NO2) represents the photolysis rate of Reaction (R6) and k
5
 is the rate coefficient of 

Reaction (R5). Hence, adjusting [O3] in the chamber allowed varying [NO]/[NO2] ratios. Here, 

to probe the dependency of SOA mass formation on relative NO and NO2 concentrations, NOx 

experiments were performed with approximately 50 % higher O3 concentration (74 ± 7 ppb) than 

that of previous NOx experiments. The remaining conditions maintained the same. 

Results obtained from these experiments are shown in Fig. 6. The behaviour observed in the 

high-O3 experiments (equivalent to lower NO/NO2) was different from that in the experiments 

with the lower [O3]. When not adjusted, [OH] increased with increasing NOx but the increase 

was less pronounced. With a lower [NO]/[NO2] ratio, the maximum OH concentration increase 

was approximately twofold relative to the respective NOx free experiments (Fig. 6), compared to 

the fourfold increase with the higher [NO]/[NO2] (Fig. 4). This is consistent to the assumption 

that reaction (R3) recycles OH. There was also a slight increase in SOA yield when [NOx] 

increased up to ~15 ppb. In addition, the increase in SOA yield was less pronounced in the high-

O3 experiments again pointing to the role of [OH] in SOA formation. 

The role of [OH] was also confirmed by another observation. By comparing the data without 

NOx addition, it can be seen that [OH] as well as the yields are higher in the high-O3 
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experiments. The higher [O3] caused a higher OH production rate and at otherwise same 

conditions (J(O1D), [H2O], etc.),  higher [OH] and thereby higher yields. In summary, the results 

of the high-O3 experiments confirmed our interpretations of the results from the low-O3 

experiments and again supported the key role of actual OH concentrations in SOA mass 

formation.  

After adjusting [OH] to the same level as in the NOx free experiments (Fig. 6), no increase in 

SOA yield was observed and increasing NOx only suppressed SOA formation (Fig. 7). These 

results were consistent with those found earlier in the low-O3 experiments indicating that, after 

isolating the effect of [OH], SOA yield was only suppressed with increasing NOx also at higher 

[O3]. Comparing the yield profiles obtained from the low-O3 and the high-O3 experiments 

respectively (blue circles in Fig. 5 and Fig. 7), it can be seen that the decrease in SOA yield was~ 

35 % in the high-O3 experiments while it was roughly 70 % in the low-O3 experiments. This 

shows that NOx dependencies itself depend on the composition of NOx. As the suppression of 

yield was more pronounced in the low-O3 experiments (= higher [NO]/[NO2]) it seemed that NO 

is the molecule mainly responsible for the SOA yield diminishing effect of NOx. 

3.3. Comparison of the impact of NOx on SOA yield from -pinene and -pinene 

photooxidation 

A series of -pinene/NOx experiments were performed in the same chamber to compare the NOx 

dependencies of SOA formation of -pinene to that of -pinene. These experiments were 

performed with 12 ± 1.2 ppb -pinene, 78 ± 14 ppb O3 and with [NOx]0 up to 126 ppb.  

When using -pinene as the SOA precursor, no increase in aerosol mass formation was observed 

at low NOx, with only suppression of the particle mass formation and the SOA yield (Fig. 8). 
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Furthermore, presumably due to the lower -pinene concentrations, no particle formation at all 

was observed when [NOx]0 was above 60 ppb.  

At high NOx levels, the differences between the NOx dependencies of -pinene (Fig. 8) and -

pinene (Fig. 1) photooxidation were not very strong, both showing a decrease with increasing 

NOx. At low NOx levels there were substantial differences, in that -pinene showed a distinctive 

increase and maximum of the yield, while the yield of -pinene is almost unaffected and 

monotonically decreasing. These differences can be explained by the differences in [O3] during 

-pinene and -pinene photooxidation. The lower [O3] in the β-pinene experiments caused 

higher [NO]/[NO2] ratios and thus more effective conversion of HO2 to OH by NO (reaction R3). 

This is supported by the experiments with -pinene performed at higher [O3] that caused less 

NOx induced increase of [OH] (Fig. 6, black squares), as well as less NOx induced increase of 

SOA yield (Fig. 7, black circles). Restricting focus to the same [BVOC]/[NOx] where the 

substantial increase in -pinene SOA yield was observed (> 100 to ~20 ppbC ppb-1), such 

increases were neither observed for -pinene nor for the monoterpene mix emitted from 

Mediterranean species (Wildt et al., 2014). The NOx dependence of SOA formation therefore is 

different in different chemical systems. As the SOA yield was dependent on the actual OH 

concentrations, differences in OH recycling may be involved here as well. However at high NOx 

conditions, the principle behaviour of all systems was identical; a general SOA yield suppression 

with increasing NOx. 

3.4. Impact of NOx on SOA formation in the presence of seed aerosol 

From Fig. 2, it can be seen that the SOA yield measured at [NOx]ss ~ 86 ppb ([NOx]0 ~ 146 ppb) 

was lower than that at [NOx]0 < 1 ppb while [OH] was higher. Hence, there must be another 

effect of NOx addition besides its impact on [OH]. As illustrated in Fig. 9, particle number 
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concentrations were suppressed significantly when adding NOx. The strong decrease of particle 

number concentration with increasing NOx indicates that NPF is suppressed by NOx (see also 

Wildt et al., 2014). Hence, there is a high chance that the SOA formation is hindered by low 

particle phase condensational sinks at high NOx levels and thus, the observed suppression of 

SOA yield may be due to the suppression of NPF. At high NOx conditions, particle numbers and 

surfaces were quite low. Therefore, high correction factors had to be used to correct the particle 

mass for wall losses of ELVOCs which includes high uncertainties (see supplement). These 

uncertainties can be diminished by using seed particles since they provide a surface onto which 

the low volatile organics may condense. In the presence of seed aerosol, the growth of particles 

would not be limited by the surface of particles and would be much less affected by losses of 

SOA-precursors on the chamber walls. 

Therefore, experiments with variations of [NOx] were also conducted in the presence of 

ammonium sulfate ((NH4)2SO4) seed particles (average seed mass and surface were 

approximately 9 ± 1 µg m
-3

 and 1.3 × 10
-3

 m
2
 m

-3
, respectively). These experiments were carried 

out in the same manner as previous experiments; by adjusting [OH] during steady state to the 

same level as during the NOx free experiments. Figure 10 presents a comparison of SOA yield 

before and after [OH] adjustment for seeded NOx experiments (seed mass is subtracted from the 

total particle mass to determine the organic mass used in the yield calculation). The results from 

the seeded experiments showed the same general features as the unseeded experiments. Without 

adjustment of [OH], yields increased with increasing NOx at low levels and were slightly 

suppressed with further increasing NOx. The most evident difference here to the experiments 

without seed is the fairly high yield at high [NOx] (Fig. 10). Even after [OH] was adjusted, the 

decrease in SOA yield was not as significant as in the experiments without seed particles. This 
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suggests that in the absence of seed particles, the accumulation of mass was indeed limited by 

low particle surface caused by the NOx induced suppression of NPF. 

In the presence of seed particles and at constant [OH], the decrease in yield was only moderate. 

This indicates that other NOx impacts such as formation of organic nitrates were moderate as 

well. The difference between yields determined with and without addition of seed particles 

indicates that at very small particle surface, our correction procedure underestimates wall losses 

of precursors. This might be due to either possible differences in uptake of the ELVOC by 

particles (mainly organic particles versus ammonium sulfate particles), or the differences in the 

size of particles. However, the real reason for this underestimation is not known yet. 

Our correction procedure may involve uncertainties and errors. Nevertheless, it had to be 

applied; otherwise the NOx dependence would have been overestimated. NOx suppresses NPF 

and thereby limits mass formation in the absence of seed particles. As both, the impacts of wall 

losses and impacts of suppressed NPF on SOA mass formation are certainly diminished in the 

presence of seed, we assume that the experiments with seed particles give the most reliable 

results on direct NOx impacts on SOA mass formation from -pinene.  

4. Summary and Conclusions 

We investigated the effect of NOx on SOA formation from -pinene photooxidation under low 

NOx and high NOx conditions and found a very similar behaviour as that observed in other 

studies (Pandis et al., 1991; Zhang et al., 1992; Presto et al., 2005; Kroll et al., 2006; Camredon 

et al., 2007; Pathak et al., 2007; Chan et al., 2010; Hoyle et al., 2011; Loza et al., 2014). At low 

NOx levels SOA yields increased with increasing NOx and then decreased at higher NOx 

concentrations. The increase of yield at low [NOx] was caused by the NOx induced increase of 
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[OH]. The decrease of yield at higher NOx levels was mainly a consequence of NPF suppression 

and thereby decreasing particle condensational sink with increasing NOx. Eliminating the 

impacts of NOx on NPF and on [OH], showed that the impacts of NOx on mass formation were 

only moderate. Even at the highest NOx level ([NOx]ss ~ 86 ppb, [BVOC]ss/[NOx]ss ~1.1) 

suppression of mass yield was only 20 – 30 %. VOC/NOx ratios in typical urban air are often 

much higher than the [BVOC]/[NOx] range scanned here (Cai et al., 2011; Pollack et al., 2013; 

Zou et al., 2015). Therefore dependent on the conditions, impacts of NOx on SOA formation in 

the real atmosphere may be far less than 20-30 %.  

Our study also showed that SOA yield is dependent on OH concentration. Although the exact 

mechanism for this [OH] dependence is still unknown, our results show that besides yield 

dependencies on the amount of pre-existing matter and effects like partitioning there is also a 

dependence on reaction conditions, in particular on oxidant levels. Although SOA yields 

measured in laboratory chambers may not be indicative of the yields in the real atmosphere, their 

variations as a consequence of different conditions could provide a more comprehensive 

description of SOA in global and climate model. 
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Table 2. Experimental conditions and results for -pinene photooxdation experiments at two OH 

levels. 

J(O
1
D)/10

-3
  

(s
-1

)
 a
 

Initial -

pinene (ppb)
 

-pinene 

reacted (ppb)
 

[OH]/10
7 

(cm
-3

) 

PMmax 

(µg m
-3

)
b 

1.9 3.8 3.6 12.5 4.2 

1.9 9.2 8.8 11.3 6.5 

1.9 9.2 8.9 11.3 6.9 

1.9 9.2 8.9 11.3 7.7 

1.9 15.9 14.8 6.2 14.4 

1.9 24.8 22.0 3.7 23.8 

1.9 24.8 22.0 3.7 23.2 

1.9 24.8 22.0 3.7 22.0 

5.4 3.8 3.6 12.5 4.1 

5.4 9.2 9.0 14.5 9.8 

5.4 15.9 15.5 15.7 21.3 

5.4 24.8 23.9 12.4 39.6 

a 
J (O

1
D) was varied by altering the TUV gap 

b
Maximum formed particle mass concentration, assuming an SOA density of 1.2 g cm

-3
. These values have been 

adjusted for wall losses and losses on particles. 
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Figure 1. Measured SOA yield from PMmax(black circles) and rates of new particle formation 

(blue squares) for the -pinene photooxidation as a function of the ratio of the initial 

hydrocarbon to the initial NOx concentration and as a function of the initial NOx concentration. 

Each point corresponds to one experiment. The errors in nucleation rate and [NOx] were 

estimated to be ± 10 %. The error in SOA yield was estimated from error propagation using the 

sum of the systematic error, correction procedure error and error in BVOC data. Note that the 

horizontal error bars is associated with the BVOC/NOx axis. 

Figure 2. Measured SOA yield from PMmax and from steady state PM (black and blue circles 

respectively) and measured OH concentration (red squares) as a function of initial ([NOx]0) and 

steady state ([NOx]ss) NOx concentrations. The errors in [OH] and [NOx] were estimated to be ± 

20 % and ± 10 % respectively. The error in SOA yield was estimated from error propagation 

using the sum of the systematic error, correction procedure error and error in BVOC data. 
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Figure 3. Total aerosol mass concentration as a function of the amount of reacted -pinene under 

low [OH] (blue open circles) and high [OH] (red open squares) conditions. The SOA yield was 

estimated from the aerosol mass linear regression slope as a function of consumed -pinene 

which resulted in approximately 20 ± 1 % and 31 ± 3 % for low and high OH conditions 

respectively. The error in [consumed -pinene] was estimated to be ± 10 % and the error in 

particle mass was estimated from the sum of the systematic error and the correction procedure 

error. 

Figure 4. Comparison of [OH] before (black squares) and after (blue squares) adjusting OH 

concentration during steady state in NOx experiments. The errors in [OH] and [NOx] were 

estimated to be ± 20 % and ± 10 % respectively. 
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Figure 5. Comparison of SOA yield before (black circles) and after (blue circles) adjusting OH 

concentration during steady state in NOx experiments. The error in [NOx] was estimated to be ± 

10 % and the error in SOA yield was estimated from error propagation using the sum of the 

systematic error, correction procedure error and error in BVOC data. 

Figure 6. Comparison of [OH] before (black squares) and after (blue squares) adjusting OH 

concentration during steady state in NOx experiments performed under lower [NO]/[NO2] ratio. 

The errors in [OH] and [NOx] were estimated to be ± 20 % and ± 10 % respectively. 
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Figure 7. Comparison of SOA yield before (black circles) and after (blue circles) adjusting OH 

concentration during steady state in NOx experiments performed under lower [NO]/[NO2] ratio. 

The error in [NOx] was estimated to be ± 10 % and the error in SOA yield was estimated from 

error propagation using the sum of the systematic error, correction procedure error and error in 

BVOC data. 

Figure 8. Measured SOA yield (black diamonds) and measured OH concentration (blue squares) 

as a function of initial NOx concentration for -pinene/NOx photooxidation experiments. Note 

that, due to the lower -pinene concentrations, the x-axis is not directly comparable to the x-axes 

of Fig. 5 and Fig. 7. In sense of BVOC/NOX ratios, the NOX range scanned here is ~ 3 times 

higher. The errors in [OH] and [NOx] were estimated to be ± 15 % and ± 10 % respectively. The 

error in SOA yield was estimated from error propagation using the sum of the systematic error, 

correction procedure error and error in BVOC data. 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-336, 2016

Manuscript under review for journal Atmos. Chem. Phys.

Published: 27 April 2016

c© Author(s) 2016. CC-BY 3.0 License.



Figure 9. Comparison of measured particle mass and particle number concentration after 

adjusting [OH] as a function of [NOx] during steady state in the absence of seed aerosol. The 

error in particle number concentration was estimated to be ± 10 %. 

Figure 10. Comparison of SOA yield before (black circles) and after (blue circles) adjusting OH 

concentration during steady state in NOx experiments performed in the presence of seed aerosol. 

The error in [NOx] was estimated to be ± 10 % and the error in SOA yield was estimated from 

error propagation using the sum of the systematic error, correction procedure error and error in 

BVOC data.  
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