000808909 001__ 808909
000808909 005__ 20220930130059.0
000808909 0247_ $$2DOI$$a10.3389/fnana.2016.00051
000808909 0247_ $$2Handle$$a2128/10767
000808909 0247_ $$2WOS$$aWOS:000375251500001
000808909 0247_ $$2altmetric$$aaltmetric:7120177
000808909 0247_ $$2pmid$$apmid:27199682
000808909 037__ $$aFZJ-2016-02439
000808909 082__ $$a610
000808909 1001_ $$0P:(DE-Juel1)159224$$aSchubert, Nicole$$b0$$eCorresponding author$$ufzj
000808909 245__ $$a3D Reconstructed cyto- muscarinic M2 receptor, and fiber archtiecture of the rat brain registered to the Waxholm Space Atlas
000808909 260__ $$aLausanne$$bFrontiers Research Foundation$$c2016
000808909 3367_ $$2DRIVER$$aarticle
000808909 3367_ $$2DataCite$$aOutput Types/Journal article
000808909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1462948109_5386
000808909 3367_ $$2BibTeX$$aARTICLE
000808909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808909 3367_ $$00$$2EndNote$$aJournal Article
000808909 520__ $$aHigh-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.
000808909 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000808909 536__ $$0G:(DE-Juel1)NIH-R01MH092311$$aNIH-R01MH092311 - Postnatal Development of Cortical Receptors and White Matter Tracts in the Vervet (NIH-R01MH092311)$$cNIH-R01MH092311$$fPostnatal Development of Cortical Receptors and White Matter Tracts in the Vervet$$x1
000808909 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000808909 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x3
000808909 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b1$$ufzj
000808909 7001_ $$0P:(DE-Juel1)128854$$aSchober, Martin$$b2$$ufzj
000808909 7001_ $$0P:(DE-Juel1)131647$$aHuynh, Anh Minh$$b3$$ufzj
000808909 7001_ $$0P:(DE-Juel1)138708$$aHuysegoms, Marcel$$b4$$ufzj
000808909 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b5$$ufzj
000808909 7001_ $$0P:(DE-HGF)0$$aBjaalie, J. G.$$b6
000808909 7001_ $$0P:(DE-HGF)0$$aLeergaard, T. B.$$b7
000808909 7001_ $$0P:(DE-Juel1)131652$$aKirlangic, Mehmet Eylem$$b8
000808909 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b9$$ufzj
000808909 7001_ $$0P:(DE-Juel1)131714$$aZilles, Karl$$b10$$ufzj
000808909 773__ $$0PERI:(DE-600)2452969-2$$a10.3389/fnana.2016.00051$$p51$$tFrontiers in neuroanatomy$$v10$$x1662-5129$$y2016
000808909 8564_ $$uhttps://juser.fz-juelich.de/record/808909/files/fnana-10-00051.pdf$$yOpenAccess
000808909 8564_ $$uhttps://juser.fz-juelich.de/record/808909/files/fnana-10-00051.gif?subformat=icon$$xicon$$yOpenAccess
000808909 8564_ $$uhttps://juser.fz-juelich.de/record/808909/files/fnana-10-00051.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808909 8564_ $$uhttps://juser.fz-juelich.de/record/808909/files/fnana-10-00051.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808909 8564_ $$uhttps://juser.fz-juelich.de/record/808909/files/fnana-10-00051.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808909 8564_ $$uhttps://juser.fz-juelich.de/record/808909/files/fnana-10-00051.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808909 8767_ $$92016-05-10$$d2016-05-10$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1.311,-
000808909 909CO $$ooai:juser.fz-juelich.de:808909$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000808909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808909 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808909 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000808909 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000808909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROANAT : 2014
000808909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808909 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000808909 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808909 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808909 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808909 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808909 9141_ $$y2016
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159224$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128854$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131647$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138708$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000808909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131714$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000808909 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000808909 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000808909 9801_ $$aUNRESTRICTED
000808909 9801_ $$aFullTexts
000808909 980__ $$ajournal
000808909 980__ $$aVDB
000808909 980__ $$aUNRESTRICTED
000808909 980__ $$aI:(DE-Juel1)INM-1-20090406
000808909 980__ $$aAPC