001     808909
005     20220930130059.0
024 7 _ |a 10.3389/fnana.2016.00051
|2 DOI
024 7 _ |a 2128/10767
|2 Handle
024 7 _ |a WOS:000375251500001
|2 WOS
024 7 _ |a altmetric:7120177
|2 altmetric
024 7 _ |a pmid:27199682
|2 pmid
037 _ _ |a FZJ-2016-02439
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)159224
|a Schubert, Nicole
|b 0
|e Corresponding author
|u fzj
245 _ _ |a 3D Reconstructed cyto- muscarinic M2 receptor, and fiber archtiecture of the rat brain registered to the Waxholm Space Atlas
260 _ _ |a Lausanne
|b Frontiers Research Foundation
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1462948109_5386
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.
536 _ _ |0 G:(DE-HGF)POF3-574
|a 574 - Theory, modelling and simulation (POF3-574)
|c POF3-574
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)NIH-R01MH092311
|a NIH-R01MH092311 - Postnatal Development of Cortical Receptors and White Matter Tracts in the Vervet (NIH-R01MH092311)
|c NIH-R01MH092311
|f Postnatal Development of Cortical Receptors and White Matter Tracts in the Vervet
|x 1
536 _ _ |0 G:(DE-Juel1)HGF-SMHB-2013-2017
|a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
536 _ _ |0 G:(EU-Grant)604102
|a HBP - The Human Brain Project (604102)
|c 604102
|f FP7-ICT-2013-FET-F
|x 3
700 1 _ |0 P:(DE-Juel1)131632
|a Axer, Markus
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)128854
|a Schober, Martin
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)131647
|a Huynh, Anh Minh
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)138708
|a Huysegoms, Marcel
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)131701
|a Palomero-Gallagher, Nicola
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Bjaalie, J. G.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Leergaard, T. B.
|b 7
700 1 _ |0 P:(DE-Juel1)131652
|a Kirlangic, Mehmet Eylem
|b 8
700 1 _ |0 P:(DE-Juel1)131631
|a Amunts, Katrin
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, Karl
|b 10
|u fzj
773 _ _ |0 PERI:(DE-600)2452969-2
|a 10.3389/fnana.2016.00051
|p 51
|t Frontiers in neuroanatomy
|v 10
|x 1662-5129
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/808909/files/fnana-10-00051.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808909/files/fnana-10-00051.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808909/files/fnana-10-00051.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808909/files/fnana-10-00051.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808909/files/fnana-10-00051.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808909/files/fnana-10-00051.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:808909
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159224
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131632
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128854
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131647
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138708
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131701
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131631
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131714
|a Forschungszentrum Jülich GmbH
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b FRONT NEUROANAT : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21