001     808937
005     20250314084114.0
024 7 _ |a 10.1145/2835238.2835242
|2 doi
037 _ _ |a FZJ-2016-02457
100 1 _ |a von Rüden, Laura
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 2nd Workshop on Visual Performance Analysis
|g VPA '15
|c Austin
|d 11/15/2015 - 11/15/2015
|w Texas
245 _ _ |a Separating the wheat from the chaff: Identifying Relevant and Similar Performance Data with Visual Analytics
260 _ _ |a New York, New York, USA
|c 2015
|b ACM Press
295 1 0 |a Proceedings of the 2nd Workshop on Visual Performance Analysis - VPA '15. - ISBN 9781450340137
300 _ _ |a Article No. 4
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1461932029_20127
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Performance-analysis tools are indispensable for understanding and optimizing the behavior of parallel programs running on increasingly powerful supercomputers. However, with size and complexity of hardware and software on the rise, performance data sets are becoming so voluminous that their analysis poses serious challenges. In particular, the search space that must be traversed and the number of individual performance views that must be explored to identify phenomena of interest becomes too large. To mitigate this problem, we use visual analytics. Specifically, we accelerate the analysis of performance profiles by automatically identifying (1) relevant and (2) similar data subsets and their performance views. We focus on views of the virtual-process topology, showing that their relevance can be well captured with visual-quality metrics and that they can be further assigned to topical groups according to their visual features. A case study demonstrates that our approach helps reduce the search space by up to 80%.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Hermanns, Marc-André
|0 P:(DE-Juel1)168253
|b 1
|u fzj
700 1 _ |a Behrisch, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Keim, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mohr, Bernd
|0 P:(DE-Juel1)132199
|b 4
|u fzj
700 1 _ |a Wolf, Felix
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1145/2835238.2835242
856 4 _ |u https://juser.fz-juelich.de/record/808937/files/vonRueden_ea2015_VPA.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808937/files/vonRueden_ea2015_VPA.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808937/files/vonRueden_ea2015_VPA.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808937/files/vonRueden_ea2015_VPA.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808937/files/vonRueden_ea2015_VPA.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/808937/files/vonRueden_ea2015_VPA.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:808937
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168253
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132199
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21