000808947 001__ 808947
000808947 005__ 20210129222921.0
000808947 0247_ $$2doi$$a10.3390/rs8020122
000808947 0247_ $$2Handle$$a2128/10836
000808947 0247_ $$2WOS$$aWOS:000371898800012
000808947 0247_ $$2altmetric$$aaltmetric:5571110
000808947 037__ $$aFZJ-2016-02461
000808947 082__ $$a620
000808947 1001_ $$0P:(DE-HGF)0$$aJulitta, Tommaso$$b0$$eCorresponding author
000808947 245__ $$aComparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained from Four Portable Field Spectroradiometers
000808947 260__ $$aBasel$$bMDPI$$c2016
000808947 3367_ $$2DRIVER$$aarticle
000808947 3367_ $$2DataCite$$aOutput Types/Journal article
000808947 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1463030465_13735
000808947 3367_ $$2BibTeX$$aARTICLE
000808947 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808947 3367_ $$00$$2EndNote$$aJournal Article
000808947 520__ $$aRemote Sensing of Sun-Induced Chlorophyll Fluorescence (SIF) is a research field of growing interest because it offers the potential to quantify actual photosynthesis and to monitor plant status. New satellite missions from the European Space Agency, such as the Earth Explorer 8 FLuorescence EXplorer (FLEX) mission—scheduled to launch in 2022 and aiming at SIF mapping—and from the National Aeronautics and Space Administration (NASA) such as the Orbiting Carbon Observatory-2 (OCO-2) sampling mission launched in July 2014, provide the capability to estimate SIF from space. The detection of the SIF signal from airborne and satellite platform is difficult and reliable ground level data are needed for calibration/validation. Several commercially available spectroradiometers are currently used to retrieve SIF in the field. This study presents a comparison exercise for evaluating the capability of four spectroradiometers to retrieve SIF. The results show that an accurate far-red SIF estimation can be achieved using spectroradiometers with an ultrafine resolution (less than 1 nm), while the red SIF estimation requires even higher spectral resolution (less than 0.5 nm). Moreover, it is shown that the Signal to Noise Ratio (SNR) plays a significant role in the precision of the far-red SIF measurements. 
000808947 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000808947 588__ $$aDataset connected to CrossRef
000808947 7001_ $$0P:(DE-HGF)0$$aCorp, Lawrence$$b1
000808947 7001_ $$0P:(DE-HGF)0$$aRossini, Micol$$b2
000808947 7001_ $$0P:(DE-Juel1)145906$$aBurkart, Andreas$$b3$$ufzj
000808947 7001_ $$0P:(DE-HGF)0$$aCogliati, Sergio$$b4
000808947 7001_ $$0P:(DE-HGF)0$$aDavies, Neville$$b5
000808947 7001_ $$0P:(DE-HGF)0$$aHom, Milton$$b6
000808947 7001_ $$0P:(DE-HGF)0$$aMac Arthur, Alasdair$$b7
000808947 7001_ $$0P:(DE-HGF)0$$aMiddleton, Elizabeth$$b8
000808947 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b9
000808947 7001_ $$0P:(DE-Juel1)7338$$aSchickling, Anke$$b10$$ufzj
000808947 7001_ $$0P:(DE-HGF)0$$aColombo, Roberto$$b11
000808947 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs8020122$$gVol. 8, no. 2, p. 122 -$$n2$$p122 -$$tRemote sensing$$v8$$x2072-4292$$y2016
000808947 8564_ $$uhttps://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.pdf$$yOpenAccess
000808947 8564_ $$uhttps://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.gif?subformat=icon$$xicon$$yOpenAccess
000808947 8564_ $$uhttps://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808947 8564_ $$uhttps://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808947 8564_ $$uhttps://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808947 8564_ $$uhttps://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808947 909CO $$ooai:juser.fz-juelich.de:808947$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000808947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b9$$kFZJ
000808947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b9$$kFZJ
000808947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7338$$aForschungszentrum Jülich$$b10$$kFZJ
000808947 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000808947 9141_ $$y2016
000808947 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808947 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808947 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000808947 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2014
000808947 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808947 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000808947 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808947 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808947 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808947 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808947 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808947 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000808947 980__ $$ajournal
000808947 980__ $$aVDB
000808947 980__ $$aUNRESTRICTED
000808947 980__ $$aI:(DE-Juel1)IBG-2-20101118
000808947 9801_ $$aFullTexts