001     808947
005     20210129222921.0
024 7 _ |a 10.3390/rs8020122
|2 doi
024 7 _ |a 2128/10836
|2 Handle
024 7 _ |a WOS:000371898800012
|2 WOS
024 7 _ |a altmetric:5571110
|2 altmetric
037 _ _ |a FZJ-2016-02461
082 _ _ |a 620
100 1 _ |a Julitta, Tommaso
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained from Four Portable Field Spectroradiometers
260 _ _ |a Basel
|c 2016
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1463030465_13735
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Remote Sensing of Sun-Induced Chlorophyll Fluorescence (SIF) is a research field of growing interest because it offers the potential to quantify actual photosynthesis and to monitor plant status. New satellite missions from the European Space Agency, such as the Earth Explorer 8 FLuorescence EXplorer (FLEX) mission—scheduled to launch in 2022 and aiming at SIF mapping—and from the National Aeronautics and Space Administration (NASA) such as the Orbiting Carbon Observatory-2 (OCO-2) sampling mission launched in July 2014, provide the capability to estimate SIF from space. The detection of the SIF signal from airborne and satellite platform is difficult and reliable ground level data are needed for calibration/validation. Several commercially available spectroradiometers are currently used to retrieve SIF in the field. This study presents a comparison exercise for evaluating the capability of four spectroradiometers to retrieve SIF. The results show that an accurate far-red SIF estimation can be achieved using spectroradiometers with an ultrafine resolution (less than 1 nm), while the red SIF estimation requires even higher spectral resolution (less than 0.5 nm). Moreover, it is shown that the Signal to Noise Ratio (SNR) plays a significant role in the precision of the far-red SIF measurements.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Corp, Lawrence
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rossini, Micol
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Burkart, Andreas
|0 P:(DE-Juel1)145906
|b 3
|u fzj
700 1 _ |a Cogliati, Sergio
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Davies, Neville
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hom, Milton
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mac Arthur, Alasdair
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Middleton, Elizabeth
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 9
700 1 _ |a Schickling, Anke
|0 P:(DE-Juel1)7338
|b 10
|u fzj
700 1 _ |a Colombo, Roberto
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.3390/rs8020122
|g Vol. 8, no. 2, p. 122 -
|0 PERI:(DE-600)2513863-7
|n 2
|p 122 -
|t Remote sensing
|v 8
|y 2016
|x 2072-4292
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/808947/files/remotesensing-08-00122.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:808947
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)7338
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21