000808950 001__ 808950
000808950 005__ 20240619091207.0
000808950 0247_ $$2doi$$a10.1016/j.polymer.2016.04.045
000808950 0247_ $$2ISSN$$a0032-3861
000808950 0247_ $$2ISSN$$a1873-2291
000808950 0247_ $$2Handle$$a2128/12285
000808950 0247_ $$2WOS$$aWOS:000376728300010
000808950 037__ $$aFZJ-2016-02462
000808950 041__ $$aEnglish
000808950 082__ $$a540
000808950 1001_ $$0P:(DE-Juel1)157777$$aCampanella, Antonella$$b0$$eCorresponding author$$ufzj
000808950 245__ $$aDielectric relaxations of nanocomposites composed of HEUR polymers and magnetite nanoparticles
000808950 260__ $$aOxford$$bElsevier Science$$c2016
000808950 3367_ $$2DRIVER$$aarticle
000808950 3367_ $$2DataCite$$aOutput Types/Journal article
000808950 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1487241722_21881
000808950 3367_ $$2BibTeX$$aARTICLE
000808950 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808950 3367_ $$00$$2EndNote$$aJournal Article
000808950 520__ $$aWe investigate the dynamics of nanocomposites composed of hydrophobically modified ethoxylated urethanes (HEUR) and magnetite nanoparticles (MNPs) as dry films. Weemployed dielectric relaxation spectroscopy (DRS) in combination with differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC).The three techniques reveal a strong heterogeneity of the matrix of the nanocomposites, consisting of (i) a crystalline poly(ethyleneoxide) PEO bulk phase, (ii) an amorphous PEO portion, and (iii) small PEO crystallites which experience different constraints than the PEO bulk phase. TSDC and DRS reveal a very high direct current (DC)-conductivity of the pure matrix, which increases with MNPs concentration. The increase of the DCconductivity is not related to an increase of the segmental mobility, but most likely to the change of the morphology of the hydrophobic domains of the polymer matrix, due to the formation of large MNPs clusters. Indeed, the MNPs neither influence the segmental dynamics of the polymer nor the phase behavior of the polymer matrix. The addition of MNPs slightly increases the activation energy related to the γ-relaxation of the polymer. This effect might be related to the changes in nano-morphology as demonstrated by the slight increase of the degree of crystallinity. The analysis of the DRS data with the electrical modulus M’’(ω) and the derivative ε’’der formalism allow us to identify a low-frequency process in addition to the conductivity relaxation. This low-frequency dispersion is also revealed by TSDC. It is most likely related to the Maxwell-Wagner- Sillars relaxation, which typically occurs in systems which feature phase separation. The detailed investigation of the dielectric properties of these novel nanocomposites with increasing MNPs concentration will be useful for their practical application, for example as absorbers of electromagnetic waves.
000808950 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000808950 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000808950 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000808950 588__ $$aDataset connected to CrossRef
000808950 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000808950 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000808950 693__ $$0EXP:(DE-MLZ)TEM-MLZ-20151210$$5EXP:(DE-MLZ)TEM-MLZ-20151210$$eTEM-MLZ: Transmission electron microscope at MLZ$$x0
000808950 7001_ $$0P:(DE-Juel1)140548$$aBrás, A.$$b1
000808950 7001_ $$0P:(DE-HGF)0$$aRaftopoulos, K. N.$$b2
000808950 7001_ $$0P:(DE-HGF)0$$aPapadakis, C. M.$$b3
000808950 7001_ $$0P:(DE-HGF)0$$aVassiliadou, O.$$b4
000808950 7001_ $$0P:(DE-HGF)0$$aKyritsis, A.$$b5
000808950 7001_ $$0P:(DE-Juel1)130507$$aAppavou, M. S.$$b6
000808950 7001_ $$0P:(DE-HGF)0$$aMüller-Buschbaum, P.$$b7
000808950 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, H.$$b8
000808950 773__ $$0PERI:(DE-600)2013972-X$$a10.1016/j.polymer.2016.04.045$$gp. S0032386116303251$$p70-80$$tPolymer$$v96$$x0032-3861$$y2016
000808950 8564_ $$uhttps://juser.fz-juelich.de/record/808950/files/Manuscript_dry_AC.pdf$$yOpenAccess
000808950 8564_ $$uhttps://juser.fz-juelich.de/record/808950/files/Manuscript_dry_AC.gif?subformat=icon$$xicon$$yOpenAccess
000808950 8564_ $$uhttps://juser.fz-juelich.de/record/808950/files/Manuscript_dry_AC.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808950 8564_ $$uhttps://juser.fz-juelich.de/record/808950/files/Manuscript_dry_AC.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808950 8564_ $$uhttps://juser.fz-juelich.de/record/808950/files/Manuscript_dry_AC.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808950 8767_ $$92016-06-10$$d2016-06-13$$eColour charges$$jZahlung erfolgt
000808950 909CO $$ooai:juser.fz-juelich.de:808950$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire
000808950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b8$$kFZJ
000808950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b6$$kFZJ
000808950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b8$$kFZJ
000808950 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000808950 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000808950 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000808950 9141_ $$y2016
000808950 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808950 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPOLYMER : 2014
000808950 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808950 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808950 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808950 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808950 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808950 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808950 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808950 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808950 920__ $$lyes
000808950 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000808950 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000808950 9801_ $$aFullTexts
000808950 980__ $$ajournal
000808950 980__ $$aVDB
000808950 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000808950 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000808950 980__ $$aUNRESTRICTED
000808950 980__ $$aAPC