000808953 001__ 808953
000808953 005__ 20210129222924.0
000808953 0247_ $$2doi$$a10.1103/PhysRevLett.116.172001
000808953 0247_ $$2ISSN$$a0031-9007
000808953 0247_ $$2ISSN$$a1079-7114
000808953 0247_ $$2Handle$$a2128/10593
000808953 0247_ $$2WOS$$aWOS:000374965000001
000808953 0247_ $$2altmetric$$aaltmetric:4681635
000808953 0247_ $$2pmid$$apmid:27176514
000808953 037__ $$aFZJ-2016-02463
000808953 082__ $$a550
000808953 1001_ $$0P:(DE-Juel1)132580$$aDurr, S.$$b0$$ufzj
000808953 245__ $$aLattice Computation of the Nucleon Scalar Quark Contents at the Physical Point
000808953 260__ $$aCollege Park, Md.$$bAPS$$c2016
000808953 3367_ $$2DRIVER$$aarticle
000808953 3367_ $$2DataCite$$aOutput Types/Journal article
000808953 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502262672_32596
000808953 3367_ $$2BibTeX$$aARTICLE
000808953 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808953 3367_ $$00$$2EndNote$$aJournal Article
000808953 500__ $$aarXiv:1510.08013
000808953 520__ $$aWe present a QCD calculation of the u, d, and s scalar quark contents of nucleons based on 47 lattice ensembles with Nf=2+1 dynamical sea quarks, 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and pion masses down to 120 MeV. Using the Feynman-Hellmann theorem, we obtain fNud=0.0405(40)(35) and fNs=0.113(45)(40), which translates into σπN=38(3)(3)  MeV, σsN=105(41)(37)  MeV, and yN=0.20(8)(8) for the sigma terms and the related ratio, where the first errors are statistical and the second errors are systematic. Using isospin relations, we also compute the individual up and down quark contents of the proton and neutron (results in the main text).
000808953 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000808953 536__ $$0G:(DE-Juel1)hjs00_20151101$$aUp and down quark masses from lattice QCD + QED (hjs00_20151101)$$chjs00_20151101$$fUp and down quark masses from lattice QCD + QED$$x1
000808953 588__ $$aDataset connected to CrossRef
000808953 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b1
000808953 7001_ $$0P:(DE-HGF)0$$aHoelbling, C.$$b2
000808953 7001_ $$0P:(DE-HGF)0$$aKatz, S. D.$$b3
000808953 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b4$$ufzj
000808953 7001_ $$0P:(DE-HGF)0$$aLellouch, L.$$b5
000808953 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b6$$ufzj
000808953 7001_ $$0P:(DE-HGF)0$$aMetivet, T.$$b7
000808953 7001_ $$0P:(DE-HGF)0$$aPortelli, A.$$b8
000808953 7001_ $$0P:(DE-Juel1)161563$$aSzabo, Kalman$$b9$$ufzj
000808953 7001_ $$0P:(DE-HGF)0$$aTorrero, C.$$b10
000808953 7001_ $$0P:(DE-HGF)0$$aToth, B. C.$$b11
000808953 7001_ $$0P:(DE-HGF)0$$aVarnhorst, L.$$b12
000808953 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.116.172001$$gVol. 116, no. 17, p. 172001$$n17$$p172001$$tPhysical review letters$$v116$$x1079-7114$$y2016
000808953 8564_ $$uhttps://juser.fz-juelich.de/record/808953/files/PhysRevLett.116.172001.pdf$$yOpenAccess
000808953 8564_ $$uhttps://juser.fz-juelich.de/record/808953/files/PhysRevLett.116.172001.gif?subformat=icon$$xicon$$yOpenAccess
000808953 8564_ $$uhttps://juser.fz-juelich.de/record/808953/files/PhysRevLett.116.172001.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808953 8564_ $$uhttps://juser.fz-juelich.de/record/808953/files/PhysRevLett.116.172001.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808953 8564_ $$uhttps://juser.fz-juelich.de/record/808953/files/PhysRevLett.116.172001.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808953 8564_ $$uhttps://juser.fz-juelich.de/record/808953/files/PhysRevLett.116.172001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808953 909CO $$ooai:juser.fz-juelich.de:808953$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000808953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132580$$aForschungszentrum Jülich$$b0$$kFZJ
000808953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b4$$kFZJ
000808953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b6$$kFZJ
000808953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich$$b9$$kFZJ
000808953 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000808953 9141_ $$y2016
000808953 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808953 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000808953 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000808953 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000808953 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808953 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808953 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808953 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808953 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808953 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808953 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808953 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808953 920__ $$lyes
000808953 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000808953 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000808953 980__ $$ajournal
000808953 980__ $$aVDB
000808953 980__ $$aI:(DE-Juel1)JSC-20090406
000808953 980__ $$aI:(DE-Juel1)NIC-20090406
000808953 980__ $$aUNRESTRICTED
000808953 9801_ $$aUNRESTRICTED
000808953 9801_ $$aFullTexts