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We present a QCD calculation of the u, d, and s scalar quark contents of nucleons based on 47 lattice

ensembles with Nf ¼ 2þ 1 dynamical sea quarks, 5 lattice spacings down to 0.054 fm, lattice sizes up to

6 fm, and pion masses down to 120 MeV. Using the Feynman-Hellmann theorem, we obtain fNud ¼

0.0405ð40Þð35Þ and fNs ¼ 0.113ð45Þð40Þ, which translates into σπN ¼ 38ð3Þð3Þ MeV, σsN ¼

105ð41Þð37Þ MeV, and yN ¼ 0.20ð8Þð8Þ for the sigma terms and the related ratio, where the first errors

are statistical and the second errors are systematic. Using isospin relations, we also compute the individual

up and down quark contents of the proton and neutron (results in the main text).

DOI: 10.1103/PhysRevLett.116.172001

Introduction.—The scalar quark contents of nucleons,

N, are important properties of these particles that are

conveniently parametrized by the dimensionless ratios,

fNud ¼ mud
hNjūuþ d̄djNi

2M2
N

≡
σπN

MN

;

fNq ¼ mq
hNjq̄qjNi

2M2
N

≡
σqN

MN

; ð1Þ

whereN can be either a proton,p, or a neutron, n, at rest, the
quark field q ¼ u, d, or s and mud ¼ ðmu þmdÞ=2 is the

average u-d quark mass. We use the relativistic normaliza-

tion hNð~p0ÞjNð~pÞi ¼ 2E~pð2πÞ
3δð3Þð~p0

− ~pÞ. With unit nor-

malization, the r.h.s. of Eq (1) would be multiplied by a

factor 2MN. Note that in the isospin limit, mu ¼ md, f
n
ud ¼

fpud and f
n
s ¼ fps andwewill generically call these quantities

fNud and fNs , respectively. Although they cannot directly be

accessed in experiment, they are scheme and scale-

independent quantities that allow us to translate quark-level

couplings into effective, scalar couplings with a nucleon.

They are related to awidevariety of observables such as pion

and kaon-nucleon scattering amplitudes, quark-mass ratios

or quark-mass contributions to nucleon masses. Their

knowledge is also very important for dark matter (DM)

searches, as they allow us to convert DM-quark couplings

into spin-independent, DM-nucleon cross sections.

Early determinations of σπN [1–3] were obtained using

π-N scattering data. They rely on a difficult extrapolation of

the amplitude to the unphysical Cheng-Dashen point, where

small SUð2Þ chiral perturbation theory (χPT) corrections

[4–9] can be applied to obtain σπN . The two results [2,3]

differ by nearly two standard deviations and a factor of about

1.4, for reasons discussed in Refs. [8–10]. σsN is then

obtained from σπN using results forms=mud and SUð3Þ χPT
[11–13]. Propagating the two determinations of σπN leads to

a factor of 3 difference in σsN at the 1.5σ level, which gets

squared in DM-nucleon cross sections. This situation has

prompted new phenomenological and model studies (some

using published lattice results) [8,10,14–19] as well as a

number of lattice calculations [20–31] (see Fig. 2). Recent

critical reviews of σπN can be found in Refs. [9,32].

Here we report on an ab initio, lattice QCD calculation,

via the Feynman-Hellmann (FH) theorem, of the nucleon

scalar quark contents, fNud and fNs , in the isospin limit. We

also compute the four quantities, fp=nu=d , to leading order in

an expansion in δm ¼ md −mu, assuming mud ∼ δm,

which is well satisfied in nature. All of our results are

accurate up to very small, subleading isospin-breaking

corrections. For fp=nu=d this represents a marked improvement

over the standard approach [33], which is only accurate up

to much larger SUð3Þ-flavor breaking corrections.

Numerical setup.—The data set at the basis of this study

consists of 47 ensembles with tree-level-improved

Symanzik gauge action and Nf ¼ 2þ 1 flavors of

clover-improved Wilson quarks, the latter featuring 2 levels
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of HEX smearing [34]. The ensembles are made up of

approximately 13 000 configurations altogether and, on

average, around 40 measurements for each correlator are

performed on each configuration. The ensembles are

obtained with 5 lattice spacings a (ranging from 0.054 fm

to 0.116 fm), lattice sizes up to 6 fm and pion masses,

Mπ , down to 120 MeV. This setup allows for a consistent

control of systematic uncertainties when reaching the

physical point (Φ), i.e., when interpolating to physical

m
ðΦÞ
ud and m

ðΦÞ
s and extrapolating to a→ 0 and V →∞.

Methodology.—We use the FH theorem to compute the

quark contents via the derivative of the nucleon mass with

respect to the quark masses

fNud ¼
mud

MN

∂MN

∂mud

�

�

�

�

Φ

; fNs ¼
ms

MN

∂MN

∂ms

�

�

�

�

Φ

; ð2Þ

thus avoiding a computation of the 3-point functions

required for a direct calculation of the matrix elements.

To determine the individual u and d contents of the

proton and neutron, we start from the simple algebraic

identity (again, δm ¼ md −mu)

fpu=d ¼

�

1

2
∓

δm

4mud

�

fpud

þ

�

1

4
∓

mud

2δm

�

δm

2M2
p

hpjd̄d − ūujpi: ð3Þ

Note that the QCD Hamiltonian can be decomposed as

H ¼ Hiso þHδm; Hδm ¼
δm

2

Z

d3xðd̄d − ūuÞ; ð4Þ

where Hiso denotes the full isospin symmetric component,

including the mud term. To leading order in δm, the shift

δMN to the mass of N ¼ p or n, due to the perturbation

Hδm, is

δMN ¼
hNjHδmjNi

hNjNi
¼

δm

4MN

hNjd̄d − ūujNi: ð5Þ

Moreover, in the isospin limit Mn ¼ Mp and hnjd̄d−

ūujni ¼ hpjūu − d̄djpi, so that, up to higher-order

isospin-breaking corrections, the n-p mass difference is

ΔQCDMN ¼ 2δMp ¼
δm

2Mp

hpjūu − d̄djpi: ð6Þ

Using this relation, introducing the quark-mass ratio

r ¼ mu=md, and remembering that, in the isospin limit,

fpud ¼ fNud, we obtain

fp=nu ¼

�

r

1þ r

�

fNud �
1

2

�

r

1 − r

�

ΔQCDMN

MN

;

fp=nd ¼

�

1

1þ r

�

fNud∓
1

2

�

1

1 − r

�

ΔQCDMN

MN

; ð7Þ

where the upper sign is for p and the lower one for n
and where MN ¼ Mn ¼ Mp is the nucleon mass in the

isospin limit. These equations hold up to very small

Oðδm2; mudδmÞ corrections. Analogous expressions were

obtained independently in Ref. [35], using SUð2Þ χPT.
Extracting hadron and quark masses.—Quark and

hadron masses are extracted as detailed in Ref. [34], with

the quark masses determined using the “ratio-difference

method.” In addition, to reliably eliminate excited state

effects in hadron correlators we have used a procedure

similar to that suggested in Ref. [36]. For each of our four

hadronic channels, we fit the corresponding correlator CðtÞ
to a single-state ansatz. We use the same minimal start time

for our fit interval, tmin, and the same maximum plateau

length, Δt, for all ensembles: tmin and Δt are fixed in

physical and lattice units, respectively. They are determined

by requiring that the distribution of fit qualities over our 47

ensembles be compatible with a uniform distribution to

better than 30%, as given by a Kolmogorov-Smirnov (KS)

test. An identical procedure is followed to determine the

axial Ward identity (AWI) masses.

Computing physical observables.—On each of our 47

ensembles, we extractMπ ,MK ,MN , andMΩ as well as the

light and strange quark masses,mud andms, as explained in

the last paragraph. We define M2
Kχ ¼ M2

K −M2
π=2 and

work in a massless scheme so the lattice spacings a depend

only on the coupling β. These lattice spacings, together

with all other quantities, are determined from a global

combined fit of the form

MnX
X ¼ ½1þ gaXðaÞ�½1þ gFVX ðMπ; LÞ�ðM

ðΦÞ
X ÞnX

× ð1þ ca;udX ðaÞ ~mud þ ca;sX ðaÞ ~ms þ h.o.t.Þ; ð8Þ

for MX ¼ ðaMXÞ=aðβÞ, with X ¼ N;Ω; π; Kχ , nX ¼ 2 for

X ¼ π and 1 otherwise and where ðaMXÞ is the hadron

mass in lattice units, as determined on a single ensemble.

The quark mass terms, renormalized in the renormalization

group invariant (RGI) scheme, are defined as

~mq ¼ mRGI
q −m

ðΦÞ
q ; mRGI

q ¼
ðamqÞ

aZS½1þ gaqðaÞ�
; ð9Þ

with renormalization constants ZS from [34]. By h.o.t. we

denote higher-order terms in the mass Taylor expansions,

and gaXðaÞ parametrizes the continuum extrapolation of

M
ðΦÞ
X , while gFVX ðMπ; LÞ parametrizes its finite-volume

corrections, according to Refs. [37,38]. The ca;qX ðaÞ,
q ¼ ud; s, are equal to cqX½1þ ga;qX ðaÞ�, where the ga;qX ðaÞ
parametrize the continuum extrapolation of the slope

parameters cqX. We define the physical point via Mπ ,

MKχ and MΩ. Thus, for those quantities, M
ðΦÞ
X are fixed

to 134.8 MeV, 484.9 MeV [39], and 1672.45 MeV [40],
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respectively. Moreover, the corresponding discretization

terms, gaXðaÞ, vanish by definition, leaving only gaNðaÞ.
Statistical and systematic uncertainties.—To estimate

systematic errors, we follow the extended frequentist

method developed in Refs. [36,41]. To account for remnant,

excited-state contributions in correlator and AWI mass fits,

in addition to the time range ðtmin;ΔtÞ, obtained through

the KS test, we consider a more conservative range with

tmin increased by 0.1 fm, while keeping Δt fixed.

Truncation errors in themud Taylor expansion are estimated

by pruning the data with two cuts in pion mass, at 320 MeV

and 480 MeV. In addition, we consider higher-order terms

proportional to ~m2

ud (or also a χPT-inspired ½ðmRGI
ud Þ3=2 −

ðm
ðΦÞ
ud Þ

3=2� for MN), ~m3

ud, ~mud ~ms, and ~m2

ud ~ms in Eq. (8).

Systematic effects from terms of even higher order, which

our results are not accurate enough to resolve, are estimated

by replacing the Taylor expansions that include higher-

order terms with their inverse, in the spirit of Padé

approximants. Regarding cutoff effects, our action formally

has leading corrections of OðαsaÞ, which are often numeri-

cally suppressed by HEX smearing, leaving a dominant

Oða2Þ term [42]. We estimate the uncertainty associated

with the continuum extrapolation of the leading M
ðΦÞ
N term

in Eq. (8) by allowing gaNðaÞ to be proportional to either αsa
or a2. Moreover, so as not to overfit the lattice results, we

neglect corrections whose coefficients are larger than 100%

except for the ones proportional to ~m2

ud (or ½ðmRGI
ud Þ3=2−

ðm
ðΦÞ
ud Þ

3=2�) in MN .

This procedure leads to 192 different analyses, each one

providing a result for the observables of interest. Our final

results are obtained by weighing these 192 values with

Akaike’s information criterion (AIC), the AIC-weighed

mean and standard deviation corresponding to the central

value and systematic error of the given observable, respec-

tively [36]. The statistical error is then the bootstrap error of

the AIC-weighed mean. The results were crosschecked by

replacing the AIC weight with either a uniform weight or a

weight proportional to the quality of each fit. In both cases

we obtained consistent values for all of our observables.

The results thus obtained account for uncertainties asso-

ciated with the continuum extrapolation of the leadingM
ðΦÞ
N

term in Eq. (8), but not of the subleading fNud or even smaller

contribution, fNs . Indeed, the discretization terms, ga;qN ðaÞ,
were set to zero in the above analyses. To account for those

uncertainties, we allow the terms ga;qN ðaÞ to be proportional

to αsa or a2. To stabilize the corresponding fits, we fixM
ðΦÞ
N

to its experimental value. Even then,we find thatwithin their

statistical errors, our results only support discretization

corrections in ca;udN ðaÞ. Including these, and performing

the same variation of 192 analyses as in the procedure

described above, we find that the central value of fNud
increases by 0.0024 and fNs decreases by 0.038 compared

to our standard analysis. At first sight one may be surprised

by the fact that adding discretization terms to fNud has a larger
effect on fNs . However, these terms are small corrections to

the ud-mass dependence of MN in the range of masses

considered, but they are of similar size to the s-mass

dependence of MN and interfere with it. We expect the

continuumextrapolation error onfNs to bemuch smaller than

the variation observed here and therefore consider this

variation to be a conservative estimate of continuum

extrapolation uncertainties. We take this variation to be

our estimate of the uncertainty associated with the con-

tinuum extrapolation of the quark contents, add it in

quadrature to the systematic error obtained in our standard

analysis, and propagate it throughout.

Results and discussion.—The fit qualities in this study

are acceptable, with an average χ2=d.o.f. ¼ 1.4. Since we

do not use the nucleon for scale setting, its physical value

constitutes a valuable crosscheck of our procedure. Of

course, here we only use the results of our standard

analysis, in which this mass is a free parameter. We obtain

MN ¼ 929ð16Þð7Þ MeV, which is in excellent agreement

with the isospin averaged physical value 938.9 MeV, as

obtained by averaging p and n masses from [40]. Typical

examples of the dependence of MN on mRGI
ud and mRGI

s are

shown in Fig. 1.

The final results for the isospin-symmetric, scalar quark

contents are

fNud ¼ 0.0405ð40Þð35Þ; fNs ¼ 0.113ð45Þð40Þ: ð10Þ

Here the systematic error includes the continuum extrapo-

lation uncertainty discussed in the preceding section. As a

further crosscheck, we have performed an additional, full

analysis where we replace, for each lattice spacing, the

renormalized quark masses in Eq. (8) by the ratio of the

lattice quark masses to their values at the physical mass

point. In this analysis, the need for renormalization factors is

obviated, because they cancel in the ratios. However, eight

additional parameters are required: at each of our five lattice

spacings, two parameters are needed to specify the values of

the ud and s quark masses corresponding to the physical

mass point, while only the two parameters m
ðΦÞ
q , q ¼ ud; s,

of Eq. (8) are needed for our standard analysis. Nevertheless,

the results obtained with this alternative approach are in

excellent agreement with the results from our main strategy.

It is straightforward to translate the results of Eq. (10)

into σ terms. We obtain σπN ¼ 38ð3Þð3Þ MeV and

σsN ¼ 105ð41Þð37Þ MeV. Another quantity of interest in

that context is the so-called strangeness content of the

nucleon, yN ¼ 2hNjs̄sjNi=hNjūuþ d̄djNi, that we obtain

with ms=mud determined self-consistently in our calcula-

tion. Our result is yN ¼ 0.20ð8Þð8Þ.
Now, using Eq. (7), together with the result for fNud, the

strong isospin splitting of the nucleon mass, ΔQCDMN ¼
2.52ð17Þð24Þ MeV from Ref. [36], and the quark-mass

ratio r ¼ 0.46ð2Þð2Þ from Ref. [39], we find
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fpu ¼ 0.0139ð13Þð12Þ; fpd ¼ 0.0253ð28Þð24Þ;

fnu ¼ 0.0116ð13Þð11Þ; fnd ¼ 0.0302ð28Þð25Þ: ð11Þ

Another interesting quantity is zN ≡ hpjūujpi=hpjd̄djpi ¼
hnjd̄djni=hnjūujni, where the last equality holds in the

isospin limit. We find it to be zN ¼ 1.20ð3Þð3Þ. This is

significantly smaller than the value of 2 that one would

obtain if the scalar densities ūu and d̄dwere replaced by the
number density operators, ūγ0u and d̄γ0d.
We compare our results for fNud and fNs to phenomeno-

logical and lattice findings in Fig. 2. Our result for fNud points
to a rather low value, for instance compared to the recent,

precise, phenomenological determination of Ref. [8].

Regarding fNs , our value is typically larger than most other

lattice results. Note that our error bars are not smaller than

those of all previous lattice based calculations. However,

unlike previous calculations, ours are performed directly at

that physical mass point and do not require uncertain

extrapolations to physical mud, nor do they make use of

SUð3Þ χPT (e.g., in replacingms byM
2
Kχ in the definition of

fNs or in constraining thems-dependence ofMN with themud

and ms dependence of the baryon octet), whose systematic

errors are difficult to estimate. Given this full model

independence, our total 13%error onfNud is quite satisfactory.
Unfortunately, the overall uncertainty on fNs is still large, at

53%. The reason for this lies in the small ms dependence of

MN , as shown in Fig. 1, which is a major drawback of the

present approach based on the FH theorem. To try to improve

on the precision, thewhole analysis has also been carried out

by fixingM
ðΦÞ
N to its experimental value.However, the impact

on the central values and error bars is small and therefore we

do not retain this approach for our main analysis. To our

GLS [2]

Pavan [3]

Alarcon et al  [10]

Shanahan et al [14]

Alvarez et al [15], FH
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FIG. 2. Comparison of our results for fNud (left panel) and for fNs (right panel) with values from the literature. Numbers are from

Refs. [2,3,10,14,15,19,18,8,43,23,25,24,30,31,29,16,17,21,44,45,28]. For lattice based determinations “FH” denotes studies that use

the Feynman-Hellmann theorem while “ME” denotes direct computations of the matrix element.

FIG. 1. Typical dependence ofMN on mRGI
ud (left panel) and mRGI

s (right panel). The black open circle represents our result forM
ðΦÞ
N in

this particular fit, while the horizontal line corresponds to its experimental value. Dependencies of MN on variables not shown in these

plots have been eliminated using the function obtained in the fit.
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understanding, in the FH approach the uncertainty on fNs can

be narrowed only by reducing the statistical error on the data

and by increasing the lever arm on ms.
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