000808971 001__ 808971
000808971 005__ 20240712100943.0
000808971 0247_ $$2doi$$a10.5194/gmd-9-1627-2016
000808971 0247_ $$2ISSN$$a1991-959X
000808971 0247_ $$2ISSN$$a1991-9603
000808971 0247_ $$2Handle$$a2128/10697
000808971 0247_ $$2WOS$$aWOS:000376936200016
000808971 037__ $$aFZJ-2016-02470
000808971 082__ $$a910
000808971 1001_ $$0P:(DE-Juel1)165650$$aHeng, Yi$$b0$$eCorresponding author
000808971 245__ $$aInverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations
000808971 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2016
000808971 3367_ $$2DRIVER$$aarticle
000808971 3367_ $$2DataCite$$aOutput Types/Journal article
000808971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1465483435_15376
000808971 3367_ $$2BibTeX$$aARTICLE
000808971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808971 3367_ $$00$$2EndNote$$aJournal Article
000808971 520__ $$aAn inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement of the mean CSI value from 8.1 to 21.4 % and the maximum CSI value from 32.3 to 52.4 %. The simulation results are also compared with those reported in other studies and good agreement is observed. Our new inverse modeling and simulation system is expected to become a useful tool to also study other volcanic eruption events.
000808971 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000808971 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x1
000808971 588__ $$aDataset connected to CrossRef
000808971 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b1
000808971 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b2
000808971 7001_ $$0P:(DE-Juel1)151377$$aRößler, Thomas$$b3
000808971 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b4
000808971 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-9-1627-2016$$gVol. 9, no. 4, p. 1627 - 1645$$n4$$p1627 - 1645$$tGeoscientific model development$$v9$$x1991-9603$$y2016
000808971 8564_ $$uhttps://juser.fz-juelich.de/record/808971/files/gmd-9-1627-2016.pdf$$yOpenAccess
000808971 8564_ $$uhttps://juser.fz-juelich.de/record/808971/files/gmd-9-1627-2016.gif?subformat=icon$$xicon$$yOpenAccess
000808971 8564_ $$uhttps://juser.fz-juelich.de/record/808971/files/gmd-9-1627-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808971 8564_ $$uhttps://juser.fz-juelich.de/record/808971/files/gmd-9-1627-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808971 8564_ $$uhttps://juser.fz-juelich.de/record/808971/files/gmd-9-1627-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808971 8564_ $$uhttps://juser.fz-juelich.de/record/808971/files/gmd-9-1627-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808971 909CO $$ooai:juser.fz-juelich.de:808971$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000808971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165650$$aForschungszentrum Jülich$$b0$$kFZJ
000808971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b1$$kFZJ
000808971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b2$$kFZJ
000808971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151377$$aForschungszentrum Jülich$$b3$$kFZJ
000808971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich$$b4$$kFZJ
000808971 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000808971 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x1
000808971 9141_ $$y2016
000808971 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000808971 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808971 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2014
000808971 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808971 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000808971 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808971 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808971 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808971 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808971 920__ $$lyes
000808971 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000808971 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1
000808971 9801_ $$aUNRESTRICTED
000808971 9801_ $$aFullTexts
000808971 980__ $$ajournal
000808971 980__ $$aVDB
000808971 980__ $$aI:(DE-Juel1)JSC-20090406
000808971 980__ $$aI:(DE-Juel1)IEK-8-20101013
000808971 980__ $$aUNRESTRICTED
000808971 981__ $$aI:(DE-Juel1)ICE-3-20101013
000808971 981__ $$aI:(DE-Juel1)IEK-8-20101013