000808972 001__ 808972
000808972 005__ 20210129222927.0
000808972 0247_ $$2doi$$a10.1103/PhysRevLett.116.177202
000808972 0247_ $$2ISSN$$a0031-9007
000808972 0247_ $$2ISSN$$a1079-7114
000808972 0247_ $$2Handle$$a2128/10667
000808972 0247_ $$2WOS$$aWOS:000374965000009
000808972 0247_ $$2altmetric$$aaltmetric:6458238
000808972 0247_ $$2pmid$$apmid:27176536
000808972 037__ $$aFZJ-2016-02471
000808972 082__ $$a550
000808972 1001_ $$0P:(DE-Juel1)157778$$aNandy, Ashis Kumar$$b0$$eCorresponding author$$ufzj
000808972 245__ $$aInterlayer Exchange Coupling: A General Scheme Turning Chiral Magnets into Magnetic Multilayers Carrying Atomic-Scale Skyrmions
000808972 260__ $$aCollege Park, Md.$$bAPS$$c2016
000808972 3367_ $$2DRIVER$$aarticle
000808972 3367_ $$2DataCite$$aOutput Types/Journal article
000808972 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1489839482_32585
000808972 3367_ $$2BibTeX$$aARTICLE
000808972 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808972 3367_ $$00$$2EndNote$$aJournal Article
000808972 520__ $$aWe report on a general principle using interlayer exchange coupling to extend the regime of chiral magnetic films in which stable or metastable magnetic Skyrmions can appear at a zero magnetic field. We verify this concept on the basis of a first-principles model for a Mn monolayer on a W(001) substrate, a prototype chiral magnet for which the atomic-scale magnetic texture is determined by the frustration of exchange interactions, impossible to unwind by laboratory magnetic fields. By means of ab initio calculations for the Mn/Wm/Con/Pt/W(001) multilayer system we show that for certain thicknesses m of the W spacer and n of the Co reference layer, the effective field of the reference layer fully substitutes the required magnetic field for Skyrmion formation.
000808972 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000808972 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000808972 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x2
000808972 588__ $$aDataset connected to CrossRef
000808972 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai$$b1$$ufzj
000808972 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$ufzj
000808972 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.116.177202$$gVol. 116, no. 17, p. 177202$$n17$$p177202$$tPhysical review letters$$v116$$x1079-7114$$y2016
000808972 8564_ $$uhttps://juser.fz-juelich.de/record/808972/files/PhysRevLett.116.177202.pdf$$yOpenAccess
000808972 8564_ $$uhttps://juser.fz-juelich.de/record/808972/files/PhysRevLett.116.177202.gif?subformat=icon$$xicon$$yOpenAccess
000808972 8564_ $$uhttps://juser.fz-juelich.de/record/808972/files/PhysRevLett.116.177202.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808972 8564_ $$uhttps://juser.fz-juelich.de/record/808972/files/PhysRevLett.116.177202.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808972 8564_ $$uhttps://juser.fz-juelich.de/record/808972/files/PhysRevLett.116.177202.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808972 8564_ $$uhttps://juser.fz-juelich.de/record/808972/files/PhysRevLett.116.177202.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808972 909CO $$ooai:juser.fz-juelich.de:808972$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000808972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157778$$aForschungszentrum Jülich$$b0$$kFZJ
000808972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich$$b1$$kFZJ
000808972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
000808972 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000808972 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000808972 9141_ $$y2016
000808972 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808972 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000808972 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000808972 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000808972 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808972 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808972 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808972 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808972 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808972 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808972 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808972 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808972 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000808972 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000808972 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000808972 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000808972 980__ $$ajournal
000808972 980__ $$aVDB
000808972 980__ $$aI:(DE-Juel1)IAS-1-20090406
000808972 980__ $$aI:(DE-Juel1)PGI-1-20110106
000808972 980__ $$aI:(DE-82)080009_20140620
000808972 980__ $$aI:(DE-82)080012_20140620
000808972 980__ $$aUNRESTRICTED
000808972 9801_ $$aUNRESTRICTED
000808972 9801_ $$aFullTexts
000808972 981__ $$aI:(DE-Juel1)PGI-1-20110106