000808998 001__ 808998
000808998 005__ 20210129222932.0
000808998 0247_ $$2doi$$a10.1002/2015JD024462
000808998 0247_ $$2ISSN$$a0148-0227
000808998 0247_ $$2ISSN$$a2156-2202
000808998 0247_ $$2ISSN$$a2169-897X
000808998 0247_ $$2ISSN$$a2169-8996
000808998 0247_ $$2WOS$$aWOS:000380730500008
000808998 0247_ $$2Handle$$a2128/16086
000808998 037__ $$aFZJ-2016-02485
000808998 041__ $$aEnglish
000808998 082__ $$a550
000808998 1001_ $$0P:(DE-HGF)0$$aSato, Kaoru$$b0$$eCorresponding author
000808998 245__ $$aClimatology and ENSO-related interannual variability of gravity waves in the southern hemisphere subtropical stratosphere revealed by high-resolution AIRS observations
000808998 260__ $$aHoboken, NJ$$bWiley$$c2016
000808998 3367_ $$2DRIVER$$aarticle
000808998 3367_ $$2DataCite$$aOutput Types/Journal article
000808998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512380165_12601
000808998 3367_ $$2BibTeX$$aARTICLE
000808998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000808998 3367_ $$00$$2EndNote$$aJournal Article
000808998 520__ $$aA new temperature retrieval from Atmospheric Infrared Sounder with a fine horizontal resolution of 13.5 km was used to examine gravity wave (GW) characteristics in the austral summer at an altitude of 39 km in the subtropical stratosphere over eight years from 2003/2004 − 2010/2011. Using an S-transform method, GW components were extracted, and GW variances, horizontal wavenumbers and their orientations were determined at each grid point and time. Both climatology and interannual variability of the GW variance were large in the subtropical South Pacific. About 70 % of the interannual variation in the GW variance there was regressed to El Niño-Southern Oscillation (ENSO) index. The regression coefficient exhibits a geographical distribution similar to that of the precipitation. In contrast, the regression coefficient of the GW variance to the quasi-biennial oscillation of the equatorial lower stratosphere was not significant in the South Pacific. These results indicate that the interannual variability of GW variance in the South Pacific is controlled largely by the convective activity modulated by the ENSO. An interesting feature is that the GW variance is maximized slightly southward of the precipitation maximum. Possible mechanisms causing the latitudinal difference are (1) dense distribution of islands, which effectively radiate GWs with long vertical wavelengths, to the south of the precipitation maximum, (2) selective excitation of southward propagating GWs in the northward vertical wind shear in the troposphere, and (3) southward refraction of GWs in the latitudinal shear of background zonal wind in the stratosphere.
000808998 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000808998 588__ $$aDataset connected to CrossRef
000808998 7001_ $$0P:(DE-HGF)0$$aTsuchiya, Chikara$$b1
000808998 7001_ $$0P:(DE-HGF)0$$aAlexander, M. Joan$$b2
000808998 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b3
000808998 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2015JD024462$$n13$$p7622–7640$$tJournal of geophysical research / Atmospheres$$v121$$x2169-897X$$y2016
000808998 8564_ $$uhttps://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf$$yOpenAccess
000808998 8564_ $$uhttps://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon$$xicon$$yOpenAccess
000808998 8564_ $$uhttps://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000808998 8564_ $$uhttps://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000808998 8564_ $$uhttps://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000808998 8564_ $$uhttps://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000808998 909CO $$ooai:juser.fz-juelich.de:808998$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000808998 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000808998 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000808998 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000808998 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000808998 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000808998 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000808998 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000808998 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES : 2014
000808998 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000808998 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000808998 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000808998 9141_ $$y2016
000808998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b3$$kFZJ
000808998 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000808998 920__ $$lyes
000808998 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000808998 980__ $$ajournal
000808998 980__ $$aVDB
000808998 980__ $$aUNRESTRICTED
000808998 980__ $$aI:(DE-Juel1)JSC-20090406
000808998 9801_ $$aFullTexts