001     808998
005     20210129222932.0
024 7 _ |2 doi
|a 10.1002/2015JD024462
024 7 _ |2 ISSN
|a 0148-0227
024 7 _ |2 ISSN
|a 2156-2202
024 7 _ |2 ISSN
|a 2169-897X
024 7 _ |2 ISSN
|a 2169-8996
024 7 _ |2 WOS
|a WOS:000380730500008
024 7 _ |2 Handle
|a 2128/16086
037 _ _ |a FZJ-2016-02485
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Sato, Kaoru
|b 0
|e Corresponding author
245 _ _ |a Climatology and ENSO-related interannual variability of gravity waves in the southern hemisphere subtropical stratosphere revealed by high-resolution AIRS observations
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512380165_12601
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a A new temperature retrieval from Atmospheric Infrared Sounder with a fine horizontal resolution of 13.5 km was used to examine gravity wave (GW) characteristics in the austral summer at an altitude of 39 km in the subtropical stratosphere over eight years from 2003/2004 − 2010/2011. Using an S-transform method, GW components were extracted, and GW variances, horizontal wavenumbers and their orientations were determined at each grid point and time. Both climatology and interannual variability of the GW variance were large in the subtropical South Pacific. About 70 % of the interannual variation in the GW variance there was regressed to El Niño-Southern Oscillation (ENSO) index. The regression coefficient exhibits a geographical distribution similar to that of the precipitation. In contrast, the regression coefficient of the GW variance to the quasi-biennial oscillation of the equatorial lower stratosphere was not significant in the South Pacific. These results indicate that the interannual variability of GW variance in the South Pacific is controlled largely by the convective activity modulated by the ENSO. An interesting feature is that the GW variance is maximized slightly southward of the precipitation maximum. Possible mechanisms causing the latitudinal difference are (1) dense distribution of islands, which effectively radiate GWs with long vertical wavelengths, to the south of the precipitation maximum, (2) selective excitation of southward propagating GWs in the northward vertical wind shear in the troposphere, and (3) southward refraction of GWs in the latitudinal shear of background zonal wind in the stratosphere.
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Tsuchiya, Chikara
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Alexander, M. Joan
|b 2
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, Lars
|b 3
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1002/2015JD024462
|n 13
|p 7622–7640
|t Journal of geophysical research / Atmospheres
|v 121
|x 2169-897X
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808998/files/Sato_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:808998
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 0
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J GEOPHYS RES : 2014
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21