001     808999
005     20240712084531.0
024 7 _ |2 doi
|a 10.1063/1.4948479
024 7 _ |2 ISSN
|a 0021-8979
024 7 _ |2 ISSN
|a 0148-6349
024 7 _ |2 ISSN
|a 1089-7550
024 7 _ |2 WOS
|a WOS:000377716500035
024 7 _ |2 Handle
|a 2128/17100
037 _ _ |a FZJ-2016-02486
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)162141
|a Pomaska, Manuel
|b 0
|e Corresponding author
|u fzj
245 _ _ |a New insight into the microstructure and doping of unintentionally n-type microcrystalline silicon carbide
260 _ _ |a Melville, NY
|b American Inst. of Physics
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1462802622_10230
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Microcrystalline silicon carbide (μc-SiC:H) deposited by hot wire chemical vapor deposition (HWCVD) and plasma-enhanced chemical vapor deposition (PECVD) provide advantageous opto-electronic properties, making it attractive as a window layer material in silicon thin-film and silicon heterojunction solar cells. However, it is still not clear which electrical transport mechanisms yield dark conductivities up to 10−3 S/cm without the active use of any doping gas and how the transport mechanisms are related to the morphology of μc-SiC:H. To investigate these open questions systematically, we investigated HWCVD and PECVD grown layers that provide a very extensive range of dark conductivity values from 10−12 S/cm to 10−3 S/cm. We found out by secondary ion mass spectrometry measurements that no direct correlation exists between oxygen or nitrogen concentrations and high dark conductivity σd, high charge carrier density n, and low activation energy Ea. Higher σd seems to rise from lower hydrogen concentrations or/and larger coherent domain sizes LSiC. On the one hand, the decrease of σd with increasing hydrogen concentration might be due to the inactivation of donors by hydrogen passivation that gives rise to decreased n. On the other hand, qualitatively consistent with the Seto model, the lower σd and lower n might be caused by smaller LSiC, since the fraction of depleted grain boundaries with higher Ea increases accordingly.
536 _ _ |0 G:(DE-HGF)POF3-121
|a 121 - Solar cells of the next generation (POF3-121)
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)130262
|a Köhler, Florian
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)130309
|a Zastrow, Uwe
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)159388
|a Mock, Jan
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130283
|a Pennartz, Frank
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)130271
|a Muthmann, Stefan
|b 5
700 1 _ |0 P:(DE-Juel1)130212
|a Astakhov, Oleksandr
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)130225
|a Carius, Reinhard
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)130238
|a Finger, Friedhelm
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)130233
|a Ding, Kaining
|b 9
|u fzj
773 _ _ |0 PERI:(DE-600)1476463-5
|a 10.1063/1.4948479
|g Vol. 119, no. 17, p. 175303 -
|n 17
|p 175303
|t Journal of applied physics
|v 119
|x 1089-7550
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/808999/files/1.4948479.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808999/files/1.4948479.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808999/files/1.4948479.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808999/files/1.4948479.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/808999/files/1.4948479.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:808999
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162141
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130262
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130309
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159388
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130283
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130212
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130225
|a Forschungszentrum Jülich
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130238
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130233
|a Forschungszentrum Jülich
|b 9
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J APPL PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21