001     809012
005     20210129222936.0
024 7 _ |a 10.1038/nnano.2015.331
|2 doi
024 7 _ |a 1748-3387
|2 ISSN
024 7 _ |a 1748-3395
|2 ISSN
024 7 _ |a WOS:000376163300016
|2 WOS
024 7 _ |a altmetric:3990739
|2 altmetric
024 7 _ |a pmid:26854566
|2 pmid
037 _ _ |a FZJ-2016-02491
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Huisman, T. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Femtosecond control of electric currents in metallic ferromagnetic heterostructures
260 _ _ |a London [u.a.]
|c 2016
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1462882774_8020
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012 Hz) emission spectroscopy and exploiting the spin–orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mikhaylovskiy, R. V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Costa, J. D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Freimuth, Frank
|0 P:(DE-Juel1)130643
|b 3
700 1 _ |a Paz, E.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ventura, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Freitas, P. P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 7
700 1 _ |a Mokrousov, Y.
|0 P:(DE-Juel1)130848
|b 8
700 1 _ |a Rasing, Th.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kimel, A. V.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1038/nnano.2015.331
|g Vol. 11, no. 5, p. 455 - 458
|0 PERI:(DE-600)2254964-X
|n 5
|p 455 - 458
|t Nature nanotechnology
|v 11
|y 2016
|x 1748-3395
856 4 _ |u https://juser.fz-juelich.de/record/809012/files/nnano.2015.331.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/809012/files/nnano.2015.331.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/809012/files/nnano.2015.331.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/809012/files/nnano.2015.331.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/809012/files/nnano.2015.331.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/809012/files/nnano.2015.331.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:809012
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NANOTECHNOL : 2014
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT NANOTECHNOL : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21