001     809114
005     20240619083525.0
024 7 _ |a 10.1371/journal.pone.0153035
|2 doi
024 7 _ |a 2128/10957
|2 Handle
024 7 _ |a WOS:000374565100009
|2 WOS
037 _ _ |a FZJ-2016-02505
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Klein, Antonia Nicole
|0 P:(DE-Juel1)145785
|b 0
245 _ _ |a Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination
260 _ _ |a Lawrence, Kan.
|c 2016
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1479892001_25248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aggregation of amyloid-β (Aβ) is postulated to be the crucial event in Alzheimer’s disease (AD). In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized D-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified D-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to Aβ monomers with micromolar affinities; (iii) eliminate Aβ oligomers; (iv) reduce Aβ-induced cytotoxicity; and (v) disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ziehm, Tamar
|0 P:(DE-Juel1)162487
|b 1
|u fzj
700 1 _ |a Tusche, Markus
|0 P:(DE-Juel1)131709
|b 2
|u fzj
700 1 _ |a Buitenhuis, Johan
|0 P:(DE-Juel1)130577
|b 3
|u fzj
700 1 _ |a Bartnik, Dirk
|0 P:(DE-Juel1)131991
|b 4
700 1 _ |a Boeddrich, Annett
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wiglenda, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wanker, Erich
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Funke, Susanne Aileen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Brener, Oleksandr
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 10
|u fzj
700 1 _ |a Kutzsche, Janine
|0 P:(DE-Juel1)159137
|b 11
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 12
|e Corresponding author
|u fzj
773 _ _ |a 10.1371/journal.pone.0153035
|g Vol. 11, no. 4, p. e0153035 -
|0 PERI:(DE-600)2267670-3
|n 4
|p e0153035 -
|t PLoS one
|v 11
|y 2016
|x 1932-6203
856 4 _ |u https://juser.fz-juelich.de/record/809114/files/Optimization%20of%20the%20All-D%20Peptide%20D3%20for%20A%CE%B2%20Oligomer%20Elimination_04_2016.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/809114/files/Optimization%20of%20the%20All-D%20Peptide%20D3%20for%20A%CE%B2%20Oligomer%20Elimination_04_2016.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:809114
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162487
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131709
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130577
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)159137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21