001     809217
005     20250314084114.0
020 _ _ |a 0927-5452
024 7 _ |a 10.3233/978-1-61499-621-7-63
|2 doi
024 7 _ |a 2128/11187
|2 Handle
024 7 _ |a WOS:000578348400007
|2 WOS
037 _ _ |a FZJ-2016-02510
100 1 _ |a Kitayama, Itaru
|0 P:(DE-HGF)0
|b 0
111 2 _ |a International Conference on Parallel Computing 2015
|g ParCo 2015
|c Edinburgh
|d 2015-09-01 - 2015-09-04
|w Scotland
245 _ _ |a Execution Performance Analysis of the ABySS Genome Sequence Assembler using Scalasca on the K Computer
260 _ _ |c 2016
|b IOS Press
295 1 0 |a Parallel Computing: On the Road to Exascale
300 _ _ |a 63-72
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1463467200_27925
|2 PUB:(DE-HGF)
490 0 _ |a Advances in Parallel Computing
|v 27
520 _ _ |a Performance analysis of the ABySS genome sequence assembler (ABYSS-P) executing on the K computer with up to 8192 compute nodes is described which identified issues that limited scalability to less than 1024 compute nodes and required prohibitive message buffer memory with 16384 or more compute nodes. The open-source Scalasca toolset was employed to analyse executions, revealing the impact of massive amounts of MPI point-to-point communication used particularly for master/worker process coordination, and inefficient parallel file operations that manifest as waiting time at later MPI collective synchronisations and communications. Initial remediation via use of collective communication operations and alternate strategies for parallel file handling show large performance and scalability improvements, with partial executions validated on the full 82,944 compute nodes of the K computer.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
700 1 _ |a Wylie, Brian J. N.
|0 P:(DE-Juel1)132302
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Maeda, Toshiyuki
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.3233/978-1-61499-621-7-63
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/809217/files/parco15.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/809217/files/parco15.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/809217/files/parco15.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/809217/files/parco15.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/809217/files/parco15.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/809217/files/parco15.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:809217
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132302
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21