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1. Introduction

The inception of quantum theory was one of taking leaps. This is illustrated by e.g. Schrödinger’s
paper [1] in which he proposes his celebrated wave equation. In this article [1] Hamilton’s principal
function S is postulated to take the form S = k lnψ with k a constant and is then substituted in
the Hamilton–Jacobi equation (HJE). Upon variation of the resulting quadratic functional with respect
to ψ (which Schrödinger later justifies using Huygens’ principle [2]) an equation linear in ψ , now
known as the Schrödinger equation, was obtained. The derivation of the Klein–Gordon equation [3–7]
is essentially identical to that of the Schrödinger equation namely, an action Ansatz is substituted
in the relativistic Hamilton–Jacobi equation, and after variation of the resulting quadratic functional
with respect to ψ , the relativistic analogue of the Schrödinger equation is obtained [3–7].

Because of the ad hoc assumptions involved in obtaining these equations, standard quantum
mechanics textbooks usually present the formalism of quantum theory as a set of postulates (see
e.g. Refs. [8–11]) and considerable activity focuses on eliminating some of these postulates [12–19].
Instead of starting from a set of postulates, the current work presents an alternative derivation of
the relativistic wave equation based on the principles of logical inference (LI) [20–23]. Specifically,
we demonstrate how the Klein–Gordon equation for a massive, charged and spinless particle follows
from LI based on the analysis of data recorded by a detector, thereby extending earlier work [24–27]
to the relativistic domain.

The key concept in LI is the plausibility [23], a mental construct which quantifies e.g. the chance
that a detection event occurs. In general, the degree of plausibility is expressed by a real number
in the range of 0 and 1 [23]. The algebra of LI facilitates plausible reasoning in the presence of un-
certainty in a mathematically well-defined manner [20–23]. In real experiments there is not only
uncertainty about the individual detection events but there obviously is also uncertainty in the con-
ditions under which the experiments are carried out. Inevitably, the conditions of the experiment
will vary whenever the experiment is repeated. But if the experimental data is to be reproducible,
the experiment must be robust (to be quantified later) with respect to small changes in the condi-
tions under which the experiment is being performed. Earlier work has shown that the equations of
non-relativistic quantum theory can be obtained by analyzing such robust experiments [24–27];most
notable are the Schrödinger [25] and the Pauli equation [26]. Importantly, the requirement that the
experiment is to be robust implies that the plausibility must be viewed as an objective assignment
(i.e. conditional probability) rather that a subjective one [25]. The present work extends this approach
to the relativistic domain: it shows how the Klein–Gordon equation [3,7] for a massive, charged, and
spinless relativistic particle emerges by an analysis similar to the one employed in Refs. [25,26].

2. Logical inference approach

2.1. Particle detection experiment

Consider an experiment in which a particle source and detectors are located at fixed positions
relative to the laboratory reference frame. The source emits a particle that interacts with one of the
detectors and triggers a detection event that yields data in the form of three spatial coordinates
r = (x, y, z) of the detector and the clock time t at which the event occurred. The experiment is
considered to be ideal in the sense that every emitted particle triggers one and only one detector.

The experiment is repeated N times, meaning that we let N particles pass through the detector.
Each time a particle is created, the (laboratory) clock time is reset. We label the particles and the
corresponding data by the index n = 1 . . .N and denote the spatial and temporal resolution by ∆s
and∆t , respectively. As particle n passes through the detector, the latter produces a time stamp tn and
a vector of spatial coordinates rn = (xn, yn, zn), which because of the limited resolution, correspond
to the time-bin jn = ceiling(tn/∆t) and space-bin kn = ceiling(rn/∆s) where, element-wise, the
function ceiling(x) returns the smallest integer not smaller than x. In practice the number of time-
bins and space-bins is necessarily finite. Therefore we must have 0 ≤ jn ≤ J and (0, 0, 0) ≤ kn ≤

K = (Kx, Ky, Kz), where J , Kx, Ky and Kz are (large) integer numbers.
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The data collected after N repetitions of the experiment is given by the set of quadruples
Υ = {(jn, kn) | 0 ≤ jn ≤ J; 0 ≤ kn ≤ K; n = 1 . . .N} , (1)

or, denoting the total amount of clicks in bin j = (jn, kn) by cj, by the equivalent data set

D =


cj
 

j
cj = N


. (2)

Note that at this stage, we have not yet assumed that there is a relation between the space–time
coordinates of the particle and the data set D .

2.2. Inference probability and Fisher information

Having specified the measurement scenario, the next step in the LI approach is to encode the
relation between the space–time coordinates of the particle and the nth detection event jn = (jn, kn)
through the inference-probability (i-prob) P(jn|θ, Z) where θ and Z specify the conditions under
which the experiment is being performed [25]. The i-prob is, at this stage, a necessarily subjective
number between zero and one that expresses the uncertainty with which the nth particle produces
the data jn. The particle is assumed to be characterized by its own (unknown) clock time θ measured
in a reference frame attached to the particle. The proposition Z represents all other experimental
conditions (e.g. applied electromagnetic potentials) which are considered fixed for the duration of
the experiment but are deemed irrelevant for the problem at hand.

It is common practice to assume, as a first step, that events are independent,meaning that knowing
all earlier and future events, it is impossible to say with certainty what the event will be. Following
this practice, we assume that the N detection events are independent. Then, according to the algebra
of LI [20–23], it follows immediately that the i-prob P(Υ |θ,N, Z) to observe data set Υ factorizes as

P(Υ |θ,N, Z) =

N
n=1

P(jn|θ, Z), (3)

or, equivalently,

P(D|θ,N, Z) = N!


j

P(j|θ, Z)cj

cj!
. (4)

The salient feature of the experiment considered here is that there is uncertainty about the
individual detection events, that there is uncertainty in themapping from θ to the spatial coordinates
and the time of the detection events. However, if the experimental data is to increase our capability
to uncover relations among the observed events at different space–time points, the experiment must
be robust [25]. In the case at hand this means that small changes in the unknown clock time θ do not
lead to erratic changes in the observed data D , even though there is no reproducibility on the level of
individual events.

It is convenient to express the requirement of robustness as an hypothesis test [25]. The
evidence [22,23] Ev for the hypothesis that θ + ϵ produces the data D relative to the hypothesis
that θ produces the same data is given by [22,23,25]

Ev = ln
P(D|θ + ϵ,N, Z)
P(D|θ,N, Z)

. (5)

The notion of a robust experiment then translates to the statement that for all θ and arbitrary but
small ϵ, the evidence |Ev| should be as small as possible. In searching for the solution of the global
optimization problem, we exclude the trivial, non-informative experiment for which P(D|θ,N, Z)
does not depend on θ [25]. Making use of Eq. (4) and expanding Eq. (5) to second order in ϵ yields

Ev =


j

cj ln
P(j|θ + ϵ, Z)
P(j|θ, Z)

=


j

cj


ϵ
P ′(j|θ, Z)
P(j|θ, Z)

−
ϵ2

2


P ′(j|θ, Z)
P(j|θ, Z)

2

−
P ′′(j|θ, Z)
P(j|θ, Z)


, (6)

where the primes indicate partial derivatives with respect to θ .
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Our goal is now to minimize |Ev| for all θ simultaneously. First note that as


j P(j|θ, Z) = 1, all
partial derivatives of


j P(j|θ, Z)with respect to θ are zero. Therefore the first and the third term in

Eq. (6) vanish if we make the assignment cj = NP(j|θ, Z). This is an important result: the criterion
of robustness not only enforces the intuitively obvious assignment P(j|θ, Z) = cj/N but by doing so,
it changes the subjective nature of P(j|θ, Z) into an objective, physically measurable quantity (the
relative frequency of outcomes). Thus, it is at this point that the possibility to view the i-prob as a
subjective assignment is eliminated [25].

With this assignment, the expression for the evidence becomes

Ev = −
ϵ2N
2


j

1
P(j|θ, Z)


∂P(j|θ, Z)

∂θ

2

, (7)

and as ϵ is arbitrary, we can find the solution of the optimization problem by minimizing the Fisher
information

IF =


j

1
P(j|θ, Z)


∂P(j|θ, Z)

∂θ

2

, (8)

for all θ simultaneously.
The basic equations of (relativistic) quantum theory are formulated in terms of continuous space

and time. Therefore, to derive such equations from a LI approach, it is necessary to take the continuum
limit of Eq. (8). This is readily accomplished in the standardmanner by letting the temporal resolution
∆t and spatial resolution∆s approach zerowhile keeping the four dimensions of the four-dimensional
volume fixed. Taking the continuum limit and ignoring irrelevant prefactors, Eq. (8) becomes

IF = c


d3r


dt
1

P(t, r|θ, Z)


∂P(t, r|θ, Z)

∂θ

2

≡


d4x

1
P(x|θ, Z)


∂P(x|θ, Z)

∂θ

2

, (9)

where x = [ct, x, y, z] = [x0, x1, x2, x3]denotes the four-vector of a location in space–time and c is the
speed of light in vacuum. Strictly speaking, Eq. (9) makes a slight abuse of notation: in the continuum
limit P(x|θ, Z) is a probability density whilst P(x|θ, Z)dx is the corresponding (dimensionless) i-prob.
Henceforth it is assumed that this change of notation is implicitly understood.

2.3. Special relativity

The above discussion focused on the relation between a robust experiment and the observed
data but does not refer to any physical theory yet. The knowledge or expectation about the physical
behavior enters the LI approach by imposing constraints on the minimization of Eq. (9). Generally
speaking, in the absence of uncertainty,wemay expect to observe data that complieswith the classical
mechanical description. Thus, in the case at hand, we require that in the absence of uncertainty, the
LI approach yields the results of the special theory of relativity (STR).

Proper time, that is the time measured by a clock at rest, is a central notion in the STR. In the
measurement scenario described above, the i-prob P(x|θ, Z)dx was already assumed to depend on
the proper time θ of the particle. In the spirit of the STR, we assume that

P(x|θ, Z) = P(τ |θ, Z), (10)

where τ (c2τ 2 ≡ c2t2 − x2 − y2 − z2) is the proper time of the detection event. In words, we assume
that the i-prob to observe a space–time event depends on Lorentz scalars only. Note that because the
clock is being resetwith each repetition of the experiment, the proper times that enter our description
are proper time intervals. In addition, we assume that space–time is homogeneous, meaning that

P(τ + δ|θ + δ, Z) = P(τ |θ, Z), (11)

where δ is an arbitrary shift of proper time. A remark about the last assumption may be in order. In
the LI approach the measurement scenario and the observed data are key to formulate the notion of
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a robust experiment. Physics on the other hand is about connecting mental pictures, concepts about
the nature of the world around us, to the observed data. Viewed in this light, Eq. (11) expresses our
expectation that carrying out the experiment at another point in space–time does not change our
mental picture. From the definition of the derivative, it follows directly from Eq. (11) that

∂P(τ |θ, Z)
∂τ

= −
∂P(τ |θ, Z)

∂θ
, (12)

and using this identity, Eq. (9) becomes

IF =


d4x

1
P(x|θ, Z)


∂P(x|θ, Z)

∂τ

2

=


d4x

1
P(τ |θ, Z)


∂P(τ |θ, Z)

∂τ

2

. (13)

Recall that the objective of the LI approach is to find P(x|θ, Z) that minimizes IF for all θ
simultaneously, subject to constraints that we discuss next.

2.4. Motion of the particle

In the absence of uncertainty, successive observed detection events map one-to-one on the
relativistic motion of the particle, described by the laws of the STR. In the LI approach, this limiting
case enters through a ‘‘correspondence principle’’ in terms of the HJE [25,26]. This is not a surprise:
as mentioned in the introduction, the HJE is one of the key ingredients in the derivation of the
Schrödinger [1] and the Klein–Gordon equation [3–7,28] and it plays a similar role in the LI derivation
of these equations. In the present paper, we do not postulate a HJE but, in analogy with the derivation
of the non-relativistic HJE [29,26], we follow an alternative path and derive the relativistic HJE for a
massive and charged particle from a field description of the four-velocity dx/dτ .

We start by assuming that there exists a (four-)vector field U(x) such that

dxµ

dτ
= −Uµ(x). (14)

Here and in the following, we use the standard co/contra-variant notation and the summation
convention and denote the Minkowski metric by η = diag(1,−1,−1,−1). Taking the derivative
of Eq. (14) with respect to τ yields

d2xµ

dτ 2
= −

∂Uµ

∂(ct)
d(ct)
dτ

−

3
i=1

∂Uµ

∂xi
dxi

dτ
= −∂νUµ

dxν
dτ
, (15)

where ∂µ is the shorthand for ∂/∂xµ. As the norm of the four-velocity is c , we have U2
≡ UαUα = c2

is a constant and hence any derivative thereof is zero. Therefore we have

∂µU2
= 2


U0 ∂U

0

∂xµ
−

3
i=1

U i ∂U
i

∂xµ


= 2Uν∂µUν = 0. (16)

Substitution of Eq. (14) into Eq. (16) yields

(∂µUν)
dxν
dτ

= 0. (17)

From Eqs. (15) and (17) it then follows that

d2xµ

dτ 2
= (∂µUν − ∂νUµ)

dxν
dτ

= Fµν
dxν
dτ
. (18)

Eq. (18) has the same form as the Lorentz force equation of a particle moving in an electrodynamic
field [30] if we identify Fµν with the field-strength tensor of electrodynamics. In order that this
identification makes sense, it is necessary to assume that the particles in the particle detection
experiment are massive and charged.
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If S = S(x) represents a scalar field, the transformation Aµ = Uµ + ∂µS yields

(∂S − A)2 = c2 (19)

where we introduced the shorthand notation (∂S)2 = (∂αS)(∂αS). As it is the four-velocity
dx/dτ which corresponds to a physically relevant quantity, imposing gauge invariance enforces
introducing a non-vanishing canonical momentum pµ = ∂µS in order to keep the norm of
the four-velocity fixed to c. Eq. (19) is the relativistic HJE in disguise. Indeed, making use of
∂S = [∂S/∂x0, ∂S/∂x1, ∂S/∂x2, ∂S/∂x3] = [∂S/∂x0,−∂S/∂x1,−∂S/∂x2,−∂S/∂x3] and A =

[A0, A1, A2, A3
] = [A0,−A1,−A2,−A3], introducing the symbols m and q for the mass and

charge of the particle, respectively, and changing in Eq. (19) symbols according to ∂S →

(∂S/∂ct, ∂S/∂x, ∂S/∂y, ∂S/∂z)/m and A → q(Φ, Ax, Ay, Az)/m (where Φ and (Ax, Ay, Az) are the
usual scalar and vector potential, respectively [30]), we find

∂S(x)
∂ct

−
q
c
Φ(x)

2

=


∂S(x)
∂x

+
q
c
Ax(x)

2

+


∂S(x)
∂y

+
q
c
Ay(x)

2

+


∂S(x|θ, Z)

∂z
+

q
c
Az(x)

2

+ m2c2, (20)

which is the relativistic HJE for a charged, massive particle in an electromagnetic field [3,7].

2.5. Derivation of the Klein–Gordon equation

As a first step, it is expedient to write Eq. (13) in an alternative form by noting that cτ =
√
ηµνxµxν

implies ∂ατ = xα/(c2τ) such that

ηµν (∂
µP(τ |θ, Z)) (∂νP(τ |θ, Z)) =


∂P(τ |θ, Z)

∂τ

2

ηµν(∂
µτ)(∂ντ)

=
1
c2


∂P(τ |θ, Z)

∂τ

2

, (21)

and hence Eq. (13) can be written as

IF = c2


d4x
1

P(τ |θ, Z)
(∂P(τ |θ, Z))2 . (22)

The general guiding principle of the LI approach is that the experiment that yields the most robust
data is described by the probability density P(x|θ, Z) that minimizes IF for all θ simultaneously,
subject to additional constraints that are deemed relevant to the experiment at hand [25]. In the
present case, we require that the description is compatible with the special theory of relativity. For a
massive, charged particle and in the absence of uncertainty, the latter requirement implies that the
classical, relativistic HJE (19) should hold. We can inject this requirement into the LI approach by
considering the functional

F = c2


d4x

(∂P(τ |θ, Z))2

P(τ |θ, Z)
+ λ


(∂S − A)2 − c2


P(τ |θ, Z)


, (23)

where λ is a weighting factor that reflects the importance of the uncertainty and robustness relative
to the contribution of the classical dynamics. It is straightforward to show that the expression Eq. (23)
is invariant under Lorentz transformations.

Extremization of Eq. (23) can be carried out by the standard variational calculus and yields a set
of nonlinear partial differential equations for P(x|θ, Z) and S(x). It is not difficult to show that at an
extremum, (i) the value of F does not depend on the value of the unknown proper time θ and that (ii)
the value of F is zero, independent of λ. The latter result implies that the extrema describe situations
in which the uncertainty about the detection events is perfectly balanced by the certainty that the
classical HJE describes the motion of the observed detection events.
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It is now expedient to write Eq. (23) more explicitly as

F = c2


d4x


1
P(x|θ, Z)


∂P(x|θ, Z)

∂ct

2

−


∂P(x|θ, Z)

∂x

2

−


∂P(x|θ, Z)

∂y

2

−


∂P(x|θ, Z)

∂z

2
+ λ


∂S(x)
∂ct

− A0(x)
2

−


∂S(x)
∂x

+ A1(x)
2

−


∂S(x)
∂y

+ A2(x)
2

−


∂S(x)
∂z

+ A3(x)
2

− c2

P(x|θ, Z)


. (24)

We do not know of any direct method to solve the nonlinear set of equations that results from
searching for the extrema of Eq. (24) but, by analogy with the non-relativistic case, we may consider
a quadratic functional of a complex-valued field ϕ(x) and use the polar representation of this field to
construct the corresponding functional in terms of this representation [25,26,31].

To this end, consider the quadratic functional

Q = 4c2


d4x


∂ϕ∗(x)
∂ct

+
i
√
λ

2c
A0(x)ϕ∗(x)


∂ϕ(x)
∂ct

−
i
√
λ

2c
A0(x)ϕ(x)



−


∂ϕ∗(x)
∂x

−
i
√
λ

2c
A1(x)ϕ∗(x)


∂ϕ(x)
∂x

+
i
√
λ

2c
A1(x)ϕ(x)



−


∂ϕ∗(x)
∂y

−
i
√
λ

2c
A2(x)ϕ∗(x)


∂ϕ(x)
∂y

+
i
√
λ

2c
A2(x)ϕ(x)



−


∂ϕ∗(x)
∂z

−
i
√
λ

2c
A3(x)ϕ∗(x)


∂ϕ(x)
∂z

+
i
√
λ

2c
A3(x)ϕ(x)


−
λc2

4
ϕ∗(x)ϕ(x)


. (25)

Substituting the polar representation

ϕ(x) =


P(x|θ, Z)ei

√
λS(x)/2, (26)

in Eq. (25) yields Q = F . Equations for the extrema of the functional Q can be found by variation with
respect to ϕ∗(x), yielding the linear partial differential equation

∂

∂ct
+ i

√
λ

2c
A0(x)

2

ϕ(x) =



∂

∂x
− i

√
λ

2c
A1(x)

2

+


∂

∂y
− i

√
λ

2c
A2(x)

2

+


∂

∂z
− i

√
λ

2c
A3(x)

2

−
λc2

4

ϕ(x), (27)

which has the same mathematical structure as the KG equation [32]. This can be made more explicit
by changing symbols according to A → q(Φ, Ax, Ay, Az)/m and λ = 4m2/ h̄2, yielding

1
c2


ih̄
∂

∂t
− qΦ(x)

2
ϕ(x) =


h̄
i
∂

∂x
−

q
c
Ax(x)

2
+


h̄
i
∂

∂y
−

q
c
Ay(x)

2

+


h̄
i
∂

∂z
−

q
c
Az(x)

2
+ m2c2


ϕ(x). (28)
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Obviously, the weighting factor λ = 4m2/ h̄2 cannot be determined on the basis of logic only but
has to follow from a comparison of the outcome of calculations based on Eq. (27) with experimental
data. It is of interest to inquire to what extent Eq. (28) allows us to infer from the observed data
properties of the massive charged particles. The speed of light in vacuum c certainly does not depend
on the properties of the massive charged particle. Then, from Eq. (28), it is immediately clear that its
solutions are invariant under the transformation h̄ → h̄ξ , q → qξ , and m → mξ . Hence, from the
observed data wemay be able to determine two but not three of the constants that appear in Eq. (28).
For instance, by a suitable redefinition of the units of mass and charge, h̄ can be eliminated from
Eq. (28) [33].

In practice, instead of solving the set of nonlinear equations in terms of P(x|θ, Z) and S(x) that
result from minimizing Eq. (24), it is much easier to first solve Eq. (27) and then use Eq. (26) to find
P(x|θ, Z) = ϕ(x)∗ϕ(x). It is important to recognize that the LI approach gives us the probability for
observing a space–time event x but does not yield an estimate of the proper time of the particle θ .
The latter was and remains unknown. The LI approach suggests that the wave function ϕ(x) is only
a mathematical vehicle, be it an extraordinarily useful one, to transform a set of nonlinear partial
differential equations into a linear set of partial differential equations. The interplay of the two real
quantities S(x) and P(x|θ, Z) which account for respectively, the classical relativistic physics and
the uncertainty on the collected data, can be disentangled through the use of single complex wave
function. But, as amathematical tool, thewave function does not need an interpretation: it is P(x|θ, Z)
that is directly linked to the observed events.

3. Discussion

Wehave shownhow the Klein–Gordon equation formassive, charged particles derives from logical
inference applied to experiments for which the observed events are independent and for which
the frequency distribution of these events is robust with respect to small changes of the conditions
under which experiments are carried out. The present derivation is a logical generalization of earlier
work [24–27] to the relativistic domain, the fundamental difference being that the measured time is
subject to uncertainty.

Obviously, the transition from non-relativistic to relativistic quantum theory is expected to bring
in some radically new features. Landau and Peierls [34] pointed out that in relativistic quantum theory
the particle position cannot be measured with an accuracy higher than its Compton wavelength.
Measuring the position of an electron with an accuracy higher than its Compton wavelength requires
an energy that exceeds the threshold for the creation of electron–positron pairs [32], rendering
meaningless the question which of the electrons is the original one. Therefore, there is a common
believe that relativistic quantum theory cannot be a theory of individual particles but it must be a field
theory for a non-constant number of particles [35,36]. The requirement of a field theory description
is also linked to the fact that the charge density of the Klein–Gordon equation is not positive definite,
as mentioned by Dirac [37] and also stressed by Feshbach and Villars [32]. This is due to the second
order time derivative in the Klein–Gordon equation and indicates that the wave function describes in
fact two degrees of freedom instead of one [32].

It is worth noting that there is nomention of the direction of time in the logical inference approach.
Indeed, when we derived Eq. (13) we allowed both θ < τ and θ > τ . This looks unusual from the
point of view of single-particle quantum mechanics (see, however, a discussion of time (a)symmetry
in Refs. [38,39]). Within relativistic quantum mechanics it seems more natural. As was suggested by
Wheeler one might interpret anti-particles as particles with the sign of the proper time reversed,
i.e. as if the particles are moving backward in time [40], and, at least, for non-interacting particles this
interpretation seems to be possible. In the measurement scenario analyzed here, there is no way to
discern the absorption of particles from the emission of anti-particles. Both types of events contribute
equally well to the detection counts. This relates to the measurement scenario where we make no
distinction between detection events forwhich τ > θ and detection events forwhich τ < θ ; causality
is not a prerequisite in the derivation presented here.

Naturally one might ask how to extent this approach to particles with non-zero spin (e.g., Dirac
equation). We leave this challenging program for future research.
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