000809306 001__ 809306
000809306 005__ 20220930130100.0
000809306 0247_ $$2doi$$a10.1038/srep24573
000809306 0247_ $$2Handle$$a2128/11193
000809306 0247_ $$2WOS$$aWOS:000374380100001
000809306 0247_ $$2altmetric$$aaltmetric:6833199
000809306 0247_ $$2pmid$$apmid:27091000
000809306 037__ $$aFZJ-2016-02530
000809306 082__ $$a000
000809306 1001_ $$0P:(DE-Juel1)140174$$aHaas, Fabian$$b0$$eCorresponding author$$ufzj
000809306 245__ $$aAngle-dependent magnetotransport in GaAs/InAs core/shell nanowires
000809306 260__ $$aLondon$$bNature Publishing Group$$c2016
000809306 3367_ $$2DRIVER$$aarticle
000809306 3367_ $$2DataCite$$aOutput Types/Journal article
000809306 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1463583115_3496
000809306 3367_ $$2BibTeX$$aARTICLE
000809306 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809306 3367_ $$00$$2EndNote$$aJournal Article
000809306 520__ $$aWe study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov–Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation.
000809306 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000809306 588__ $$aDataset connected to CrossRef
000809306 7001_ $$0P:(DE-HGF)0$$aWenz, Tobias$$b1
000809306 7001_ $$0P:(DE-Juel1)145960$$aZellekens, Patrick$$b2$$ufzj
000809306 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b3$$ufzj
000809306 7001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b4$$ufzj
000809306 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b5$$ufzj
000809306 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6$$ufzj
000809306 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b7$$ufzj
000809306 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8$$eCorresponding author$$ufzj
000809306 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep24573$$gVol. 6, p. 24573 -$$p24573 -$$tScientific reports$$v6$$x2045-2322$$y2016
000809306 8564_ $$uhttps://juser.fz-juelich.de/record/809306/files/srep24573.pdf$$yOpenAccess
000809306 8564_ $$uhttps://juser.fz-juelich.de/record/809306/files/srep24573.gif?subformat=icon$$xicon$$yOpenAccess
000809306 8564_ $$uhttps://juser.fz-juelich.de/record/809306/files/srep24573.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000809306 8564_ $$uhttps://juser.fz-juelich.de/record/809306/files/srep24573.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000809306 8564_ $$uhttps://juser.fz-juelich.de/record/809306/files/srep24573.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000809306 8564_ $$uhttps://juser.fz-juelich.de/record/809306/files/srep24573.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000809306 8767_ $$92016-04-04$$d2016-04-06$$eAPC$$jZahlung erfolgt
000809306 909CO $$ooai:juser.fz-juelich.de:809306$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140174$$aForschungszentrum Jülich$$b0$$kFZJ
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich$$b2$$kFZJ
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich$$b3$$kFZJ
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich$$b4$$kFZJ
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich$$b5$$kFZJ
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b7$$kFZJ
000809306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b8$$kFZJ
000809306 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000809306 9141_ $$y2016
000809306 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809306 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000809306 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000809306 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000809306 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2014
000809306 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000809306 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809306 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809306 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000809306 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2014
000809306 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000809306 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809306 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809306 920__ $$lyes
000809306 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000809306 9801_ $$aFullTexts
000809306 980__ $$ajournal
000809306 980__ $$aVDB
000809306 980__ $$aUNRESTRICTED
000809306 980__ $$aI:(DE-Juel1)PGI-9-20110106
000809306 980__ $$aAPC