000809307 001__ 809307
000809307 005__ 20210129222955.0
000809307 0247_ $$2doi$$a10.1021/acs.nanolett.6b00414
000809307 0247_ $$2ISSN$$a1530-6984
000809307 0247_ $$2ISSN$$a1530-6992
000809307 0247_ $$2WOS$$aWOS:000375889700033
000809307 037__ $$aFZJ-2016-02531
000809307 082__ $$a540
000809307 1001_ $$0P:(DE-Juel1)140272$$aHeedt, S.$$b0$$eCorresponding author
000809307 245__ $$aBallistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts
000809307 260__ $$aWashington, DC$$bACS Publ.$$c2016
000809307 3367_ $$2DRIVER$$aarticle
000809307 3367_ $$2DataCite$$aOutput Types/Journal article
000809307 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1463740493_858
000809307 3367_ $$2BibTeX$$aARTICLE
000809307 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809307 3367_ $$00$$2EndNote$$aJournal Article
000809307 520__ $$aOne-dimensional ballistic transport is demonstrated for a high-mobility InAs nanowire device. Unlike conventional quantum point contacts (QPCs) created in a two-dimensional electron gas, the nanowire QPCs represent one-dimensional constrictions formed inside a quasi-onedimensional conductor. For each QPC, the local subband occupation can be controlled individually between zero and up to six degenerate modes. At large out-of-plane magnetic fields Landau quantization and Zeeman splitting emerge and comprehensive voltage bias spectroscopy is performed. Confinement-induced quenching of the orbital motion gives rise to significantly modified subband-dependent Landé g factors. A pronounced g factor enhancement related to Coulomb exchange interaction is reported. Many-body effects of that kind also manifest in the observation of the 0.7·2e2/h conductance anomaly, commonly found in planar devices.
000809307 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000809307 588__ $$aDataset connected to CrossRef
000809307 7001_ $$0P:(DE-HGF)0$$aProst, W.$$b1
000809307 7001_ $$0P:(DE-Juel1)128631$$aSchubert, J.$$b2
000809307 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b3
000809307 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b4$$eCorresponding author
000809307 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.6b00414$$gVol. 16, no. 5, p. 3116 - 3123$$n5$$p3116 - 3123$$tNano letters$$v16$$x1530-6992$$y2016
000809307 8564_ $$uhttps://juser.fz-juelich.de/record/809307/files/Heedt-Nanoletters-2016.pdf$$yRestricted
000809307 8564_ $$uhttps://juser.fz-juelich.de/record/809307/files/Heedt-Nanoletters-2016.gif?subformat=icon$$xicon$$yRestricted
000809307 8564_ $$uhttps://juser.fz-juelich.de/record/809307/files/Heedt-Nanoletters-2016.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000809307 8564_ $$uhttps://juser.fz-juelich.de/record/809307/files/Heedt-Nanoletters-2016.jpg?subformat=icon-180$$xicon-180$$yRestricted
000809307 8564_ $$uhttps://juser.fz-juelich.de/record/809307/files/Heedt-Nanoletters-2016.jpg?subformat=icon-640$$xicon-640$$yRestricted
000809307 8564_ $$uhttps://juser.fz-juelich.de/record/809307/files/Heedt-Nanoletters-2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000809307 909CO $$ooai:juser.fz-juelich.de:809307$$pVDB
000809307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140272$$aForschungszentrum Jülich$$b0$$kFZJ
000809307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b2$$kFZJ
000809307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b3$$kFZJ
000809307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b4$$kFZJ
000809307 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000809307 9141_ $$y2016
000809307 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809307 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2014
000809307 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2014
000809307 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809307 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809307 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809307 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000809307 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000809307 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809307 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000809307 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809307 920__ $$lyes
000809307 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000809307 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000809307 980__ $$ajournal
000809307 980__ $$aVDB
000809307 980__ $$aUNRESTRICTED
000809307 980__ $$aI:(DE-Juel1)PGI-9-20110106
000809307 980__ $$aI:(DE-82)080009_20140620