000809438 001__ 809438
000809438 005__ 20240619083525.0
000809438 0247_ $$2doi$$a10.1073/pnas.1600275113
000809438 0247_ $$2ISSN$$a0027-8424
000809438 0247_ $$2ISSN$$a1091-6490
000809438 0247_ $$2Handle$$a2128/11200
000809438 0247_ $$2WOS$$aWOS:000374393800031
000809438 0247_ $$2altmetric$$aaltmetric:6485775
000809438 0247_ $$2pmid$$apmid:27044100
000809438 037__ $$aFZJ-2016-02544
000809438 041__ $$aEnglish
000809438 082__ $$a000
000809438 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0
000809438 245__ $$aAccumulation of formamide in hydrothermal pores to form prebiotic nucleobases
000809438 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2016
000809438 3367_ $$2DRIVER$$aarticle
000809438 3367_ $$2DataCite$$aOutput Types/Journal article
000809438 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1463666239_13501
000809438 3367_ $$2BibTeX$$aARTICLE
000809438 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809438 3367_ $$00$$2EndNote$$aJournal Article
000809438 520__ $$aFormamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346−9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45–90 d, starting with an initial formamide weight fraction of 10−3 wt % that is typical for concentrations in shallow lakes on early Earth.
000809438 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000809438 588__ $$aDataset connected to CrossRef
000809438 7001_ $$0P:(DE-Juel1)144600$$aAfanasenkau, Dzmitry$$b1
000809438 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K. G.$$b2
000809438 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b3$$eCorresponding author
000809438 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1600275113$$gVol. 113, no. 16, p. 4272 - 4277$$n16$$p4272 - 4277$$tProceedings of the National Academy of Sciences of the United States of America$$v113$$x1091-6490$$y2016
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/Formamide_PNAS-10rev%282%29-black.pdf$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/supplementarymaterial-10rev%281%29.pdf$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/Formamide_PNAS-10rev%282%29-black.gif?subformat=icon$$xicon$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/Formamide_PNAS-10rev%282%29-black.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/Formamide_PNAS-10rev%282%29-black.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/Formamide_PNAS-10rev%282%29-black.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/Formamide_PNAS-10rev%282%29-black.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/supplementarymaterial-10rev%281%29.gif?subformat=icon$$xicon$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/supplementarymaterial-10rev%281%29.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/supplementarymaterial-10rev%281%29.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/supplementarymaterial-10rev%281%29.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000809438 8564_ $$uhttps://juser.fz-juelich.de/record/809438/files/supplementarymaterial-10rev%281%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000809438 8767_ $$92016-04-19$$d2016-04-20$$ePublication charges$$jZahlung erfolgt$$lKK: Heinen$$p2016-00275R$$zUSD 1.225
000809438 909CO $$ooai:juser.fz-juelich.de:809438$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000809438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b0$$kFZJ
000809438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144600$$aForschungszentrum Jülich$$b1$$kFZJ
000809438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b2$$kFZJ
000809438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b3$$kFZJ
000809438 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000809438 9141_ $$y2016
000809438 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809438 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000809438 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000809438 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2014
000809438 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2014
000809438 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809438 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809438 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809438 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000809438 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000809438 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000809438 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000809438 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000809438 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809438 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809438 920__ $$lyes
000809438 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000809438 9801_ $$aFullTexts
000809438 980__ $$ajournal
000809438 980__ $$aVDB
000809438 980__ $$aUNRESTRICTED
000809438 980__ $$aI:(DE-Juel1)ICS-3-20110106
000809438 980__ $$aAPC