000809680 001__ 809680
000809680 005__ 20240711101501.0
000809680 0247_ $$2doi$$a10.1016/j.ijhydene.2016.10.040
000809680 0247_ $$2ISSN$$a0360-3199
000809680 0247_ $$2ISSN$$a1879-3487
000809680 0247_ $$2WOS$$aWOS:000395213200042
000809680 037__ $$aFZJ-2016-02615
000809680 041__ $$aEnglish
000809680 082__ $$a660
000809680 1001_ $$0P:(DE-Juel1)165735$$aRahim, Yasser$$b0
000809680 245__ $$aCharacterizing Membrane Electrode Assemblies for High Temperature Polymer Electrolyte Membrane Fuel Cells Using Design of Experiments
000809680 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000809680 3367_ $$2DRIVER$$aarticle
000809680 3367_ $$2DataCite$$aOutput Types/Journal article
000809680 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581580241_3774
000809680 3367_ $$2BibTeX$$aARTICLE
000809680 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809680 3367_ $$00$$2EndNote$$aJournal Article
000809680 520__ $$aA comparative study of four different high temperature polymer electrolyte membrane fuel cell (HT-PEFC) polybenzimidazole (PBI) based membrane electrode assemblies (MEAs) is undertaken utilizing the design of experiments (DOE) method, a very valuable statistical optimization method, much underutilized in fuel cell research. Single cell voltages are examined as a response (target variable) at two levels (high and low) of four factors (controlled variables); anode and cathode stoichiometry, operating temperature and current density. This yields a two-level, four factor (24) full factorial DOE. The data is used to form a linear regression model for each MEA, which is in turn utilized to predict the cell voltage at random values within the selected ranges of the four factors for validation. The main effects and two factor interactions of each factor are compared to determine their effect on the cell voltage and the underlying physics is examined to determine the best performing MEAs. The PBI based MEA has a much higher tolerance to carbon monoxide (CO) in the fuel stream in comparison with Nafion based MEAs due to the different proton conducting mechanism as well as a higher operating temperature, thus enabling reliable operation of HT-PEFC stacks with reformate containing upto 3% CO.
000809680 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000809680 588__ $$aDataset connected to CrossRef
000809680 7001_ $$0P:(DE-Juel1)129863$$aJanssen, Holger$$b1$$eCorresponding author
000809680 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b2
000809680 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2016.10.040$$gp. S0360319916330348$$n2$$p1189-1202$$tInternational journal of hydrogen energy$$v42$$x0360-3199$$y2017
000809680 8564_ $$uhttps://juser.fz-juelich.de/record/809680/files/1-s2.0-S0360319916330348-main.pdf$$yRestricted
000809680 8564_ $$uhttps://juser.fz-juelich.de/record/809680/files/1-s2.0-S0360319916330348-main.gif?subformat=icon$$xicon$$yRestricted
000809680 8564_ $$uhttps://juser.fz-juelich.de/record/809680/files/1-s2.0-S0360319916330348-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000809680 8564_ $$uhttps://juser.fz-juelich.de/record/809680/files/1-s2.0-S0360319916330348-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000809680 8564_ $$uhttps://juser.fz-juelich.de/record/809680/files/1-s2.0-S0360319916330348-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000809680 8564_ $$uhttps://juser.fz-juelich.de/record/809680/files/1-s2.0-S0360319916330348-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000809680 909CO $$ooai:juser.fz-juelich.de:809680$$pVDB
000809680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165735$$aForschungszentrum Jülich$$b0$$kFZJ
000809680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129863$$aForschungszentrum Jülich$$b1$$kFZJ
000809680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b2$$kFZJ
000809680 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000809680 9141_ $$y2017
000809680 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000809680 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809680 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809680 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000809680 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000809680 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000809680 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809680 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809680 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809680 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809680 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000809680 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000809680 920__ $$lyes
000809680 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000809680 980__ $$ajournal
000809680 980__ $$aVDB
000809680 980__ $$aI:(DE-Juel1)IEK-3-20101013
000809680 980__ $$aUNRESTRICTED
000809680 981__ $$aI:(DE-Juel1)ICE-2-20101013