000809682 001__ 809682
000809682 005__ 20210129223034.0
000809682 0247_ $$2doi$$a10.1016/j.neuroimage.2016.04.072
000809682 0247_ $$2ISSN$$a1053-8119
000809682 0247_ $$2ISSN$$a1095-9572
000809682 0247_ $$2WOS$$aWOS:000378048700008
000809682 0247_ $$2altmetric$$aaltmetric:7351487
000809682 0247_ $$2pmid$$apmid:27179606
000809682 037__ $$aFZJ-2016-02616
000809682 082__ $$a610
000809682 1001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b0$$eCorresponding author$$ufzj
000809682 245__ $$aBehavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation
000809682 260__ $$aOrlando, Fla.$$bAcademic Press$$c2016
000809682 3367_ $$2DRIVER$$aarticle
000809682 3367_ $$2DataCite$$aOutput Types/Journal article
000809682 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467199822_3585
000809682 3367_ $$2BibTeX$$aARTICLE
000809682 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000809682 3367_ $$00$$2EndNote$$aJournal Article
000809682 520__ $$aGiven the increasing number of neuroimaging publications, the automated knowledge extraction on brain-behavior associations by quantitative meta-analyses has become a highly important and rapidly growing field of research. Among several methods to perform coordinate-based neuroimaging meta-analyses, Activation Likelihood Estimation (ALE) has been widely adopted. In this paper, we addressed two pressing questions related to ALE meta-analysis: i) Which thresholding method is most appropriate to perform statistical inference? ii) Which sample size, i.e., number of experiments, is needed to perform robust meta-analyses? We provided quantitative answers to these questions by simulating more than 120,000 meta-analysis datasets using empirical parameters (i.e., number of subjects, number of reported foci, distribution of activation foci) derived from the BrainMap database. This allowed to characterize the behavior of ALE analyses, to derive first power estimates for neuroimaging meta-analyses, and to thus formulate recommendations for future ALE studies. We could show as a first consequence that cluster-level family-wise error (FWE) correction represents the most appropriate method for statistical inference, while voxel-level FWE correction is valid but more conservative. In contrast, uncorrected inference and false-discovery rate correction should be avoided. As a second consequence, researchers should aim to include at least 20 experiments into an ALE meta-analysis to achieve sufficient power for moderate effects. We would like to note, though, that these calculations and recommendations are specific to ALE and may not be extrapolated to other approaches for (neuroimaging) meta-analysis.
000809682 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000809682 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x1
000809682 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000809682 588__ $$aDataset connected to CrossRef
000809682 7001_ $$0P:(DE-HGF)0$$aNichols, Thomas E.$$b1
000809682 7001_ $$0P:(DE-HGF)0$$aLaird, Angela R.$$b2
000809682 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b3$$ufzj
000809682 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b4$$ufzj
000809682 7001_ $$0P:(DE-HGF)0$$aFox, Peter T.$$b5
000809682 7001_ $$0P:(DE-Juel1)136848$$aBzdok, Danilo$$b6
000809682 7001_ $$0P:(DE-HGF)0$$aEickhoff, Claudia R.$$b7
000809682 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2016.04.072$$gp. S1053811916300337$$p70-85$$tNeuroImage$$v137$$x1053-8119$$y2016
000809682 8564_ $$uhttps://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.pdf$$yRestricted
000809682 8564_ $$uhttps://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.gif?subformat=icon$$xicon$$yRestricted
000809682 8564_ $$uhttps://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000809682 8564_ $$uhttps://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.jpg?subformat=icon-180$$xicon-180$$yRestricted
000809682 8564_ $$uhttps://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.jpg?subformat=icon-640$$xicon-640$$yRestricted
000809682 8564_ $$uhttps://juser.fz-juelich.de/record/809682/files/Eickhoff_etal_NeuroImage_2016.pdf?subformat=pdfa$$xpdfa$$yRestricted
000809682 909CO $$ooai:juser.fz-juelich.de:809682$$pec_fundedresources$$pVDB$$popenaire
000809682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b0$$kFZJ
000809682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b3$$kFZJ
000809682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b4$$kFZJ
000809682 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000809682 9141_ $$y2016
000809682 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000809682 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000809682 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2014
000809682 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000809682 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000809682 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000809682 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000809682 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2014
000809682 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000809682 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000809682 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000809682 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000809682 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000809682 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000809682 980__ $$ajournal
000809682 980__ $$aVDB
000809682 980__ $$aUNRESTRICTED
000809682 980__ $$aI:(DE-Juel1)INM-1-20090406